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Constructing Agreement
Coefficients: AC1 and Aickin’s α

OBJECTIVE

This chapter presents a detailed discussion of two paradox-resistant alternative agree-
ment coefficients named the AC1 and Aickin’s α (not to be confounded with Krip-
pendorff’s α of the previous chapter) proposed by Gwet (2008a) and Aickin (1990)
respectively. These two agreement coefficients will be constructed step by step, from
the definition of the theoretical construct to the formulation of the coefficient. All in-
termediary steps, which include the underlying statistical model, and the subject and
rater population parameters will be spelled out. This chapter focuses particularly on
the AC1 coefficient, and aims at providing a detailed account of its real meaning, its
advantages, and possible limitations. Also discussed is Gwet’s AC2, the extension of
AC1 to ordinal, interval and ratio ratings
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“There is no true value of any characteristic, state, or condition that is
defined in terms of measurement or observation. Change of procedure for
measurement (change in operational definition) or observation produces a
new number · · · . There is no such thing as a fact concerning an empirical
observation.”

- Edwards Deming (1900-1993) -

4.1 Overview

In this chapter, I discuss two particular agreement coefficients: (1) the
AC1 statistic proposed by Gwet (2008a) as a paradox-resistant alternative to the
unstable Kappa coefficient, and (2) the alpha (α) coefficient of Aickin1 (1990), an
inter-reliability statistic based on a clear-cut definition of the notion of “extent of
agreement among raters.” I present the reader with a clear view of a step-by-step
construction of an agreement coefficient, and will conduct an elaborate discussion
of the underlying assumptions. Both coefficients differ from Kappa mainly in the
way the percent chance agreement is calculated. As a matter of fact, the notion of
chance agreement is pivotal in the study of chance-corrected agreement coefficients.
Understanding it well is essential for developing effective agreement coefficients. The
poor statistical properties of Kappa for example stem precisely from the inadequate
approach used to evaluate the percent chance agreement.

Several authors have justified the Kappa coefficient on the ground that it repre-
sents the difference between the observed percent agreement (pa) and the percent
chance agreement2 (pe), which is normalized by its maximum value (1− pe) so that
the coefficient is confined within the (0, 1) interval. The problem is that this whole
operation describes something that may not even be remotely close to what raters
actually do. My views on this are more in line with Grove et al. (1981) who while
talking about what diagnosticians in the medical field actually do said this: “They as-
sign the easy cases or textbook cases, to diagnoses with little or not error ; they may
guess or diagnose randomly on the others. If one knew which cases were textbook
cases, one could them separately ; but that is a difficult matter.” I strongly believe
that the distinction between textbook and non-textbook cases is the crux of the mat-
ter. Confronting this issue head-on is as important and difficult as it is inevitable,
and how it is approached might decide how good or bad the agrement coefficient will
turn out to be.

Grove et al. (1981) describes Kappa’s percent chance agreement in the following
1Not to be confounded with Krippendorff’s alpha, which is an entirely different coefficient dis-

cussed in the previous chapters.
2Chance agreement here stands for agreement when two raters assign ratings to subjects ran-

domly.
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terms: “When in doubt on a nontextbook case, each rater mentally flips a biased
coin, with the probability of getting heads (giving the diagnosis) equal to his own
base rates ...” This characterization of Kappa’s percent chance agreement is likely
too generous because Kappa’s percent chance agreement does not behave near as
well. The problem stems from the first 3 words ”When in doubt” of this quote. In
fact, there nothing considered to be an integral part of kappa, which suggests that
its expression for chance-agreement probability applies only when the raters are in
doubt. Kappa expression does not incorporate an estimate of the nontextbook or
uncertain cases.

The Kappa and Pi coefficients rely on a percent chance agreement or chance-
agreement probability expression that is valid only under the improbable assumption
that all ratings are known to be independent even before the experiment had been
carried out. To justify the two expressions used to evaluate the chance-agreement
probabilities of Kappa and Pi, the reasoning was that if the processes by which two
raters classify a subject are statistically independent, then the probability that they
agree is the product of the individual probabilities of classification into the category of
agreement. However, raters often rate the same subjects, and are therefore expected
to produce ratings that are dependent with possibly a few exceptions when they are
in doubt.

Throughout this chapter, I consider that independence occurs when a nondeter-
ministic3 rating (generally associated with hard or nontextbook cases) is assigned
to a subject that is hard to rate. Nondeterministic ratings may be expected on a
small fraction of subjects only, and certainly not on the whole subject sample or po-
pulation. The AC1 of Gwet(2008a), and the alpha of Aickin (1990) are based upon
the more realistic assumption that only a portion of the observed ratings will poten-
tially lead to agreement by chance. The difficulty to overcome will be to estimate the
percent of subjects that are associated with a nondeterministic rating.

When I started working on an alternative to the Kappa coefficient, I was unaware
of Aickin’s work. I learned about it only after the publication in Gwet (2008a), of
the ideas to be discussed here. I then discovered that the framework I proposed
was made more general by allowing the group of textbook subjects to be specific to
each rater instead of being unique for all raters as Aickin assumed. Moreover, my
conceptual definition of the extent of agreement among raters differ from Aickin’s.
That is both coefficients do not quantify the same concept. Aickin’s alpha coefficient
for two raters represents the portion of the entire population of subjects that both
raters are expected to classify identically for cause, as opposed to classifying them
identically by chance. To see what Gwet’s AC1 for two raters conceptually represents,

3The process of rating a subject is considered nondeterministic if it has no apparent connection
with the subject’s characteristics.
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imagine that all subjects to be classified into identical categories by pure chance
are first identified, then removed from the population of subjects. This operation
creates a new trimmed population of subjects where agreement by chance would be
impossible. The AC1 coefficient is the relative number of subjects in the trimmed
subject population upon which the raters are expected to agree. AC1 and alpha
coefficients both represent a probability of agreement for cause, which are calculated
with respect to two different reference subject populations. Although it is limited to
two raters only, I have found Aickin’s proposal useful and decided to include it into
the discussions.

Among Kappa’s strengths is a genuine attempt to correct the percent agreement
for chance agreement, and the simplicity with which this was done. Among its limi-
tations are the paradoxes described by Feinstein and Cicchetti (1990), where Kappa
would yield a low value when the raters show high agreement. In this chapter I pro-
pose the AC1 coefficient, which has some similarities with Kappa in its formulation
and its simplicity, in addition to being paradox-resistant. The alpha coefficient is
also close to Kappa in its form. But unlike Kappa and AC1, the alpha coefficient
is computation-intensive with its iterative procedure. AC1 and alpha both share the
same feature of being paradox-resistant.

4.2 Gwet’s AC1 and Aickin’s α for two Raters

This section describes the procedures for computing the AC1 and α coefficients
in the case of two raters classifying a sample of n subjects into one of q possible
categories. The calculation of these coefficients will also be illustrated in a numerical
example.

4.2.1 The AC1 Statistic

Let us consider a two-rater reliability experiment based on a q-level no-
minal measurement scale. As previously indicated, rating data resulting from such
an experiment could be conveniently organized in a contingency table such as Table
2.7 in chapter 2. The AC1 coefficient denoted4 by γ̂1 is defined as follows:

γ̂1 =
pa − pe

1− pe
, with pa =

q∑
k=1

p
kk

, pe =
1

q − 1

q∑
k=1

πk(1− πk), (4.2.1)

4I use γ̂1 (read “gamma hat one”) to designate the value of AC1 estimated from observed ratings
taken on a sample of subjects. Its estimand γ1 is the AC1 value based on the entire subject population.
Later in this chapter, I will use the symbol γ̂2 to designate AC2, which the weighted version of AC1.
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Table 4.12: Weighted Agreement Coefficients for Table 4.9 Rating Data

Coefficient Unweighted Weighted

Conger’s Kappa 0.4762 0.7435
Gwet’s AC1 0.5021 0.8224
Fleiss’ Kappa 0.4651 0.7305
Krippendorff’s α 0.4817 0.7468
Brenann-Prediger 0.4933 0.7980

Percent Agreement 0.6200 0.9439

4.7 Concluding Remarks

The primary objective of this chapter was to present a theoretical framework for
investigating the notion of agreement among raters, and to introduce the AC1 sta-
tistic as a robust alternative agreement coefficient to Kappa, Pi, or Krippendorff’s
alpha. I wanted to have an in-depth discussion about the relationship between the
computational procedures and the concept of agreement for the purpose of justifying
the different approaches. I wanted the reader to see why some computational pro-
cedures are formulated the way they are, and to see what their limitations may be.
The whole framework developed in this chapter is based on the notion of E-subjects
or easy subjects also known as textbook subjects, and on the notion of H-subjects
or hard subjects that are expected to be rated randomly and susceptible to produce
agreement among raters by pure chance. Because of the difficulty to tease apart the
subpopulations of E- and H-subjects, it is often necessary to make assumptions in
order to obtain a definitive formulation of the computational procedures.

All agreement coefficients discussed in the past few chapters were developed
around the percent agreement pa, which is corrected for chance agreement using
various strategies. Agreement by pure chance is perceived by most researchers as
false agreement that if left untreated may artificially increase the estimated extent
of agreement among raters. Therefore, correcting the percent agreement for chance
agreement aims at dampening down the adverse effect of spurious agreements on the
agreement coefficients, and the false sense of uniformity in the ratings they convey.
An agreement by pure chance does not reflect any leveling in raters’ knowledge and
skills.

While adjusting for chance agreement is necessary, not all adjustment methods
are expected to bring the percent agreement closer to the “true” extent of agree-
ment among raters. Kappa, and Pi are known to behave as well as other alternative
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coefficients only when the percent agreement is around 0.5. The BP coefficient’s per-
formance appears to be superior to that of Kappa and Pi. However, the fixed percent
chance agreement of 0.5 used by BP sometimes indicates a propensity for chance
agreement that exceeds what would be expected from the data. This artificially re-
duces the magnitude of the inter-rater reliability coefficient.

Improving inter-rater reliability coefficients requires one to define a construct and
to formulate the operational definition that shapes it, possibly through statistical mo-
deling. Aickin (1990) proposed the approach discussed in section 4.3. His approach led
to an agreement coefficient with good statistical properties, and is based on the no-
tion of “Hard-to-score Subjects” who are assigned nondeterministic ratings. Among
the disadvantages of Aickin’s alpha coefficient are its time-consuming iterative com-
putation procedure, and its magnitude that cannot reach the maximum value of
1. Gwet’s approach, which led to the AC1 coefficient is discussed in section 4.4. It
also uses the notion of “Hard-to-score Subjects” that produce agreement by chance.
While Aickin’s alpha represents the relative number of “Easy-to-score Subjects” with
respect to the total number of subjects, Gwet’s AC1 represents the relative number
of “Easy-to-score Subjects” with respect to the group of subjects left after removing
H-subjects. That is, if the raters agree on all H-subjects then the AC1 coefficient
will be 1, and Aickin’s alpha will still be the proportion of E-subjects in the popu-
lation. In fact alpha takes the maximum value of 1 only if there is no H-subject in
the subject population. For Aickin (1990) the very existence of H-subjects makes it
impossible to obtain a perfect agreement even if there is no observed disagreement.
For Gwet (2008), only an observed disagreement (on an H-subject) would make it
impossible to obtain the maximum agreement coefficient of 1.

When special types of disagreements represent a certain level of agreement (or
partial agreement), the AC2 coefficient introduced in section 4.6, provides a more
accurate assessment of the inter-rater reliability. This is achieved by assigning a
weight to each pair of scores, downweighting the pairs that represent little agreement
while upweighting those representing substantial agreement. Although we have only
considered a few types of weights in this chapter, practitioners could consider different
weights to serve different purposes, provided the weights used in the analysis are
defined prior to the reliability experiment.
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