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Intraclass Correlation: A
Measure of Raters’ Agreement

OBJECTIVE

This chapter presents a general overview of the use of Intraclass Corre-
lation Coefficients for quantifying the extent of agreement among raters
when the ratings are in the form of quantitative measurements. A high-
level description of the underlying statistical models is provided as well
as a discussion on the limitations associated with their use. After rea-
ding this chapter the practitioner will be able to decide which model is
appropriate for the study that was conducted, and will know the rela-
ted challenges that must be overcome. This chapter also describes the
Bland-Altman plot, a popular graphical method for analyzing agreement
between two raters. The reader will find an introduction to sample size
calculations in this chapter, and a more detailed treatment of the sample
size problem in subsequent chapters. Figure 7.4.1 represents a flowchart
showing how to find the correct intraclass correlation coefficients based
on the way the ratings were gathered and the type of analysis to be done.
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7.1 Introduction

In the past few chapters of parts I and II, I presented many techniques for quan-
tifying the extent of agreement among raters. Although some of these techniques
were extended to interval and ratio data, the primary focus has been on nominal and
ordinal data. This chapter as well as the other chapters of part III, are devoted to
the study of inter-rater reliability for quantitative outcomes whose possible values are
defined by a continuum, as opposed to being a predetermined set of specific values.

Why do we need to care about intraclass correlation when weighted versions
of the chance-corrected measures can be used to handle quantitative outcomes ? It
is because the notion of “perfect” agreement associated with two raters assigning
the exact same score to the same subject, does not translate well to quantitative
measurements. Consider for example two electronic devices used to measure the
knee joint laxity on 15 human subjects. Even if both devices are equally reliable,
you would not expect them to produce the exact same quantitative measurement
on the same subjects, since these values belong to a continuum. Likewise, two very
competent raters that measure the height or the weight of the same human subject
will likely produce slightly different numbers regardless of their proficiency level in
the use of the measuring instrument. With agreement no longer referring to an exact
match, the notions of chance agreement and percent agreement evaporate.

The solution to this problem is to use the portion of variation in the data that is
due to subjects, and to compare it to the other portion of that variation due to raters.
If the rater-induced variation exceeds that of the subject by a wide margin then the
raters are said to have low inter-rater reliability. Otherwise, the raters are said to
have high inter-rater reliability. But this approach will work only if the reliability
experiment is designed in such a way that the different variation components can be
separated. You will see in the next few sections how this task can be accomplished.
Several approaches can be used to design an inter-rater reliability study, depending
on the goal aimed at for the study. In the next section, I will describe a few designs
commonly used in the context of inter-rater reliability analysis.

7.2 Statistical Models

Consider the reliability data shown in Table 7.1. That data represents scores that
4 raters assigned to 6 subjects, and could be interpreted in various ways depending
on how it was collected. Here are 4 possible study designs (or data models) that
could have produced Table 1 data:
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I Model 1A: Each subject is rated by a different group of raters

According to this model, each row of Table 7.1 is not necessarily associated
with the same set of 4 raters. Although the 4 raters are consistently labeled as
1, 2, 3, and 4, they could represent different individuals, or different measuring
instruments. One may average this data row-wise to study the subject effect,
but will not be able to average column-wise to obtain the rater effect. It is why
this is often known as a one-factor (or one-way) model, the single factor here
being the subject.

The main implication of this model is that one rater may not have the op-
portunity to score more than one subject. Consequently, this model makes it
impossible to evaluate Intra-rater Reliability , which is a measure of the ra-
ter’s self-consistency. However, the raters under this model still score the same
subjects, making it possible to compute Inter-rater reliability.

The main advantage for using this model is that the raters could be located in
different geographic areas, and rate local subjects. There is no need to move
subjects around to allow different groups of raters to rate the same subjects.
This model may also be suitable in situations where subjects are hard to recruit
and the availability of the same group of raters cannot be guaranteed when a
subject is able to participate in the experiment.

Table 7.1: Scores assigned by 4 raters to 6 subjectsa

Rater
Subject

1 2 3 4
Average

1 9 2 5 8 6
2 6 1 3 2 3
3 8 4 6 8 6.5
4 7 1 2 6 4
5 10 5 6 9 7.5
6 6 2 4 7 4.75

Average 7.67 2.5 4.33 6.67 5.29

aThis data is taken from Shrout & Fleiss (1979), although I replaced the terms Target and Judge
with Subject and Rater respectively, and added row and column marginal averages.
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I Model 1B: Each rater rates a different group of subjects

If Table 7.1 data were collected according to this design, then the 6 subjects
may differ from rater to rater. That is, each rater scored his own set of subjects,
even though I may have decided to consistently labeled them as 1, 2, 3, 4, 5,
and 6. One may evaluate the rater effect by averaging Table 7.1’s columns. Any
row-wise averaging would be meaningless as such an operation would involve
different subjects as well as different raters. Therefore, the only factor that
can be studied is the rater factor, and this model will later be referred to as a
one-factor or one-way model.

The main implication of this model is that it allows for the evaluation of intra-
rater reliability, and not that of inter-rater reliability. Evaluating inter-rater
reliability always requires different raters to score the same subjects.

I Model 2: The Random Factorial Design

According to this model, each subject is scored by the same group of raters.
Both the subjects and the raters are random samples selected from the respec-
tive populations they represent, hence the naming “random” design. Moreover,
the column and row marginal averages are meaningful, and the effects of sub-
ject and rater factors can be evaluated. It is because both factors (rater and
subject) can be studied that this design is known as a “factorial design”. The
experimental design that produces Table 7.1 data is called a two-way factorial
design.

I Model 3: The Mixed Factorial Design

According to this design, each subject is scored by the same group of raters,
and is also in this regard a factorial design. Unlike Model 2, here only the
group of subjects represents a random sample selected from a larger subject
population, while the group of raters does not represent a random sample.
Because the group of raters that participate in the reliability experiment is not
randomly selected from a larger rater population, these raters only represent
themselves. The resulting inter-rater reliability coefficient can therefore not be
applied to raters beyond those in the experiment. Therefore, the subject effect
is random, while the rater effect is fixed. This combination of random and fixed
effects gave this design the name “Mixed Factorial Design.” When the number
of factors considered is limited to two as is the case for Table 7.1, it is renamed
the “Two-Way Mixed Factorial Design.”

Each of these models requires a different method for calculating the intraclass
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correlation coefficient. Shrout & Fleiss (1979) discussed models 1A (although it was
referred to as model 1), 2, and 3. The same models were also discussed by McGraw
and Wong (1996), who presented methods for computing the intraclass correlation
for each of them. However, these authors did not deal with the important problem
of missing ratings, which is very common in inter-rater reliability experiments. The
next few chapters of Part III of this book discuss the missing-rating issue extensively.

7.3 The Bland-Altman Plot

An mainly graphical method often used as an alternative to the intraclass corre-
lation for analyzing inter-rater reliability data was proposed by Bland and Altman
(1986). It combines a graphical approach and a quantitative analysis of the magni-
tude of the rating differences. This method can only analyze two raters at a time,
and has become popular over time among researchers, although many of its users
are often unaware of its limitations. In this section, I will present an overview of this
method, and will discuss its merits as well as its limitations.

Suppose that we want to study the extent of agreement between the two raters la-
beled as 3 and 4 using Table 7.1’s ratings. The Bland-Altman method is implemented
as follows:

• The first step consists of creating a scatterplot that depicts the differences in
ratings between raters 4 and 3 as a function of their averages. Table 7.2 shows
the ratings being analyzed as well as the two series of averages and differences
used to create the scatterplot of Figure 7.3.1.

• The next step is to display on the scatterplot created in the previous step, the
two “limits of agreement”. The dotted line at the bottom is the lower limit of
agreement and the one at the top represents the upper limit of agreement. The
lower limit of agreement is -1.169 while the upper limit of agreement is 5.836.
This indicates that you can expect the difference between raters 4 and 3 to be
as high as 3.763 and as low as 0.904. Depending on the application at hand,
such a gap may be acceptable or may be too wide. Ultimately, this gap will help
the researcher decide whether the extent of agreement between the two raters
4 and 3 is acceptable or not. If d is the average difference and s the standard
deviation of the differences, then the lower limit of agreement is d− 2s/n and
the upper limit of agreement d + 2s/n.

The two steps described above summarize what is known as the Bland-Altman
method. It is intuitive and fairly straightforward to apply. Bland and Altman (1986)
indicated that their plot can help study the relationship between the rating pairwise
differences and the associated pairwise means, which by the way are used as surro-
gates for the true rating associated with the subject. The study of this relationship
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is one way of verifying whether the differences are independent or not. These diffe-
rences must be approximately independent for the interpretation of the lower and
upper limits of agreement to be valid. If these differences have for example a tendency
to decrease as the averages increase, or if this relationship shows any other specific
trend, this may an indication of a lack of independence. Transforming the initial
ratings using the logarithm function for example may be the remedy for obtaining
the independence needed.

Some researchers believe that the Bland-Altman method is the only realistic way
of dealing with inter-rater agreement. That is no true. We will see in the next few
chapters why the intraclass correlation is not only appropriate, but is often the better
approach.

Table 7.2: Scores assigned by Raters 3 & 4 to 6 subjects

Subject Rater #3 Rater #4 Mean Rating Differencea

1 5 8 6.5 3
2 3 2 2.5 -1
3 6 8 7 2
4 2 6 4 4
5 6 9 7.5 3
6 4 7 5.5 3

aDifference = (Rater 4) - (Rater 3)
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Figure 7.3.1: Rating Differences as a function of rating means
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ISSUES WITH THE BLAND-ALTMAN METHOD

Part of the popularity of the Bland-Altman method stems from its graphical
nature. You can look at the graph and see right in front of you the differences
between the ratings obtained from the two raters you are analyzing. A simple visual
exploration may even allow you to form an opinion about the extent to which they
agree. Using the two limits of agreement helps you figure out how large the difference
should be before it can be considered too large. Here are a few assumptions the
Bland-Altman method is based upon, and which are often not satisfied:

• Bland and Altman (1986, p. 4) indicates that the “... differences are likely to
follow a Normal distribution because we have removed a lot of the variation
between subjects and are left with the measurement error.” The real problem
with this assumption is that it is untrue if there is a subject-rater interaction.
This is often the case when the rating is affected by the magnitude of the
“true” score associated with the subjects. The subject-rater interaction does
not preclude the differences from following the Normal distribution. However,
the differences will be correlated and their actual standard deviation would be
higher than the estimate s recommended by Bland and Altman(1986).

If the standard deviation of the differences is underestimated then the Bland-
Altman method may produce a false sense of agreement. When subjects and
raters interact, inter-rater reliability is better analyzed with the intraclass cor-
relation that relies on a formal modeling of the interaction effect.

• Another benefit of the Bland-Altman plot lies in the analysis of the the rela-
tionship between the differences and the average ratings. This relationship is
important primarily because it allows you to see whether raters and subjects
interact provided the average is a good surrogate for the subject’s true score.
The problem here is that the average is known to be close to the true value
only if there is little variation in the ratings. That is if the raters are known to
be in agreement, an assumption we cannot make since that very agreement is
precisely what we are studying.

• The Bland-Altman method is meant for pairwise analyses only. It may not
allow you to obtain a global picture of the extent of agreement among multiple
raters. When the number of raters is moderately large such as 8, the number
of pairwise analyses becomes as large as 28, which can be problematic.

I would recommend using the Bland-Altman plot mainly as an exploratory tech-
nique. It allows the researcher to have a first glimpse into the inter-rater reliability
results. Ultimately, an intraclass correlation based on the appropriate statistical mo-
del should be calculated.
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7.4 Sample Size Calculations

When designing an inter-rater (or intra-rater) reliability study, the researcher
first needs to determine how many subjects and how many raters must be part of
the experiment. Sometimes, there is also a need to determine the number of trials also
known as the number of replicates if replication is desired. Note that replication is
about a rater taking more than one measurement from the same subject. Each of the
next three chapters has a section on sample size calculation. These sections provide
detailed procedures showing how the number of raters, the number of subjects and
the number of trials can be determined depending on which data model is chosen.

Traditionally power calculation as done in statistics is based on the test of hy-
pothesis involving population means, and consists of finding the optimal sample size
that yields the desired power1 for the statistical test. This procedure generally re-
quires the researcher to specify the effect size (or the detectable difference)2, the
statistical significance (also known as α or alpha), and the desired power. The ap-
proach proposed here for the ICC is slightly different. It requires the researcher to
specify the desired confidence interval length (this is equivalent to specifying the ef-
fect size), the confidence level associated with the confidence interval (this often takes
the values 90%, 95%, or 99%), and the anticipated ICC value. The anticipated ICC
value may be known from prior studies or from a pilot experiment. If such a value
is unknown then I will recommend a conservative approach based on the anticipated
ICC value that will yield the largest confidence interval length.

Our investigation has revealed that you need about 5 raters to optimize your
inter-rater reliability coefficient for a given total number of ratings. The total num-
ber of ratings is the product of the number of raters by the number of subjects
(assuming one trial per rater and per subject). Therefore, if your experiment is going
to generate 140 ratings for example, then it would be more efficient to have 5 raters
and 28 subjects instead of having 10 raters and 14 subjects. A design is said to be
more efficient in this context when it yields the smaller confidence interval length.
Consequently increasing the number of subjects is more rewarding than increasing
the number of raters beyond 5. However, if recruiting raters is cheaper than recruiting
subjects then you may have to increase the number of raters beyond 5 and reduce
the number of subjects.

In practice, it often happens that the researcher has to use a specific model, due

1The power of a statistical test represents the probability for that test to reject the “null” hypo-
thesis when it is false. This “null” hypothesis could be the equality of two population means, or the
equality of a population mean to a hypothetical value.

2The detectable difference is the smallest difference between the two population means under
comparison, which will cause the null hypothesis to be rejected.
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to various practical constraints. If you have the opportunity to chose the model you
want, the question becomes which one to chose and how to chose it. The answer
depends on whether you want to optimize the inter-rater reliability calculation, the
intra-rater reliability calculation or both. Let us start with the inter-rater reliability
optimization first.

For the purpose of optimizing the inter-rater reliability assessment, I recommend
the use of models 2 or 3 if possible. Model 3, if appropriate, is expected to yield
more accurate intra-rater reliability coefficients than model 2 for the same number of
raters, and subjects. However, the discussions in subsequent chapters may give you
the impression that using models 1A or 2 will produce similar results. This is not
accurate. Model 1A allows you to use a different group of raters for each subject.
While this may be convenient when the same group of raters cannot be present
to rate the same subjects, the inter-rater reliability calculation comes with a price
tag. The use of different groups of raters is expected to increase the variation in
ratings due to the rater effect, which in turn will reduce the magnitude of the inter-
rater reliability coefficient. Model 1A does not allow for an in-depth analysis of the
impact of having different groups of raters, since it does not specify the mechanism
underlying the selection of these raters for each subject. The choice between models
2 and 3 depends on whether the raters used in the experiment are the only ones you
are interested in (model 3), or whether they are part of a larger universe of raters you
like to infer to (model 2). Under models 2 and 3, each rater is expected to rate all
subjects, making it easier for you to decide how many raters, subjects, and possibly
trials will produce the ratings you need. This is one of the key advantages of these
two models.

For the purpose of optimizing the intra-rater reliability, I still recommend the use
of models 2 or 3 if possible. You may nevertheless use the simple model 1B with a
single subject being rated multiple times by each of the participating raters. However,
using model 1B makes the intra-rater reliability very dependent upon the one subject
being rated. An alternative approach would be to use model 1A with one rater rating
each subject multiple times. Again this approach will make the intra-rater reliability
very dependent on the specific rater used in the experiment. This may or may not
be what you want. The approach I recommend is the use of models 2 or 3, with
model 2 (if appropriate) expected to produce more accurate intra-rater reliability
coefficient for the same number of raters than model 3. For a fixed number of ratings
per rater, you need no more than 4, 5, or 6 trials to obtain the most accurate intra-
rater reliability coefficient under models 2 and 3. That is if a rater must produce
40 ratings, it would be more effective to use 8 subjects and 5 trials rather than 20
subjects and 2 trials. All these issues and many more are discussed in-depth in the
next three chapters.



- 194 - Chapter 7 : Intraclass Correlation : A Measure of Agreement

Figure 7.4.1 represents a decision tree showing which equations or subsections in
the subsequent chapters should be used to compute the correct agreement coefficient
and associated p-values and confidence intervals, depending on the model dictated by
your study design. The numbering of these equations (or subsections) is descriptive,
and the first digit refers to the chapter number, the second digit to the section within
the chapter, and the third number to a specific equation or subsection.

Selecting the Correct  Intraclass 
Correlation Coefficient

Which Model 
Should be Used? 

Each subject is rated by a 
different group of raters 

(Model 1A)

Each rater rates a different 
group of subjects

(Model 1B)

Each subject rated by the same 
randomly-selected group of raters

(Model 2)

Each subject rated by the same 
fixed group of raters

(Model 3)

Type of 
Reliability? 

Type of 
Reliability? 

Type of 
Reliability? 

Type of 
Reliability? 

Inter-Rater 
Reliability

(Eqs: 8.1.3 & 8.1.6)

Confidence Interval
(Eqs: 8.3.1 & 8.3.2)

P-value
(Equation: 8.3.4)

Intra-Rater 
Reliability

(N/A)

Inter-Rater 
Reliability

(N/A)

Intra-Rater 
Reliability

(Eqs: 8.2.3 & 8.2.4)

Confidence Interval
(Eqs: 8.3.5 & 8.3.6)

P-value
(Equation: 8.3.8)

Inter-Rater 
Reliability

(Eqs: 9.2.3, 9.2.8, 
9.2.9, 9.5.2)

Confidence Interval
(Eqs: 9.3.1 & 9.3.2)

P-value
(Equation: 9.3.6)

Intra-Rater 
Reliability

(Eqs: 9.2.11 & 
9.2.12, 9.5.3)

Confidence Interval
(Eqs: 9.3.7 & 9.3.8)

P-value
(Equation: 9.3.11)

Inter-Rater Reliability
(Eqs: 10.2.6, 10.2.8, 

10.2.9, 10.2.16)

Confidence Interval
(Eqs: 10.3.1, 10.3.2, 

10.3.6, & 10.3.7)

P-value
(Section # 10.3.3)

Intra-Rater 
Reliability

(Eqs: 10.2.7, 
10.2.10)

Confidence Interval
(Eqs: 10.3.10 & 

10.3.11)

P-value
(Section # 10.3.4)

Figure 7.4.1: Choosing the Correct Intraclass Correlation


