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Abstract

Inter-rater reliability studies have become an integral part of most data qual-
ity control programs used in various fields of research. The ultimate goal
of these studies to quantify the extent of agreement among raters is often
achieved without incorporating the specific way they were designed into the
statistical procedures. As a result, the interpretation of agreement coef-
ficients is often incomplete, and sometimes misleading. Many agreement
coefficients in the literature implicitly assume a fully-crossed design where
each rater is expected to rate all subjects even though fractional designs
with different groups of raters assigned to different subjects are common.
The purpose of this paper is to propose a new probabilistic methodology
for interpreting agreement coefficients based on their design-based standard
errors. Simulation results demonstrating the validity of the design-based
standard errors are presented. We also provide guidelines for determining
the minimum sample sizes required to obtain optimal study designs.
keywords: inter-rater reliability; Cohen’s kappa coefficient; Gwet’s AC2;
Fleiss’ kappa.



1 Introduction

Two raters with a high inter-rater reliability coefficient can rate subjects
interchangeably with minimal rater effect. Any variation in the ratings is
then seen as an attribute of the subjects, and not that of the raters nor the
subject-rater interaction. Only under this ideal scenario may a researcher
use the ratings to qualify subjects with respect to the phenomenon under
investigation.

Several methods aimed at quantifying the extent of agreement between
two raters were proposed in the literature, most of which being expressed
in the form κ = (pa − pe)/(1 − pe), where pa is the percent agreement,
and pe the percent chance agreement. While many known agreement coef-
ficients share the same percent agreement, they tend to differ in the way
they quantify the percent chance agreement. Guttman (1945), Bennett et
al. (1954), Holley and Guilford (1964), Maxwell (1977), as well as Janson
and Vegelius (1979) independently developed the same agreement coefficient
for 2 raters and 2 categories, evaluating the percent chance agreement as
the inverse of the number of categories used in the experiment. Brennan
and Prediger (1981) later extended it to an arbitrarily large number of cat-
egories. Still in the context of 2 raters, Scott (1955), and Cohen (1960)
both proposed two agreement coefficients that compute the percent chance
agreement based on the observed raters’ classification probabilities. Both
coefficients are known in the literature as Scott’s π and Cohen’s κ. Cohen’s
kappa gained in popularity among researchers since it was published, despite
the fact that Scott’s Pi was published 5 years earlier, and that both suffer
from serious and well-documented deficiencies (see Cicchetti and Feinstein,
1990, or Feinstein and Cicchetti, 1990). Alternatives to Scott’s Pi and Co-
hen’s Kappa include Brennan-Prediger coefficient (see Brennan and Prediger,
1981), or Gwet’s AC1 and AC2 (see Gwet, 2008 and Gwet, 2014), two coef-
ficients that are more resistant to high prevalence and lack of uniformity in
raters’ classification probabilities.

All two-rater agreement coefficients are based on 3 fundamental and often
overlooked assumptions that define their statistical framework:

• Study findings will not be extended beyond the 2 participating raters.

• Each rater is expected to rate all subjects recruited for the experiment.

• The subjects recruited for the experiment constitute a representative
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sample of a larger population of subjects they were selected from.

Even if all these 3 conditions are violated, one can still use Cohen’s equa-
tion and claim to have calculated kappa. For example two-rater inter-rater
reliability experiments where the 2 raters change from subject to subject are
common in practice (see Hallgren, 2012). Although this framework is dif-
ferent from that of Cohen (1960, 1968), kappa is still often used. Here is
a typical situation where the study design is ignored in the calculation and
interpretation of an agreement coefficient. We will show in this paper that
using the correct standard error associated with the agreement coefficient is
pivotal for incorporating the design into the analysis of inter-rater reliability
studies. Fleiss, Cohen, and Everitt (1968) proposed valid standard errors of
kappa and weighted kappa. Unfortunately, researchers are not using these
expressions very often. This is mainly due to a lack of clear guidelines for
using them when interpreting the magnitude of agreement coefficients.

Fleiss (1971) proposed the first extention of Cohen’s kappa coefficient
to multiple raters. Conger (1980), Light (1971), and Gwet (2008a) recom-
mended alternative approaches. All these generalizations kept the original
two-rater format of agreement coefficients as the ratio (pa − pe)/(1 − pe) of
the propensity of agreement beyond chance to the propensity of non chance
agreement.

Almost all multiple-rater agreement coefficients in the inter-rater reliabil-
ity literature are formulated under the assumption that each rater rates all
subjects. That is n subjects and r raters participating in a study will produce
a total of rn ratings. Let us refer to this as a fully-crossed design. For scoring
processes that are demanding, the researcher often reduces the workload of
raters by assigning different groups of 2, 3, or 4 raters to different subjects.
Although Fleiss’ generalized kappa coefficient may still be calculated under
this fractional design, its interpretation however will be different.

For the remaining part of this paper, we will assume that n subjects
were randomly selected from the original subject population comprising N
subjects. At times one may assume n = N , indicating that all subjects of
interest are recruited for the study. Moreover, r raters are randomly selected
from an original universe of R raters. Once again, for some studies we could
have r = R, indicating no sampling of the rater population.
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2 Design of Inter-Rater Reliability Studies

There is a long list of factors that can be considered when designing an inter-
rater reliability study. This includes the type of rating scale, the number of
categories in that scale, the number of subjects, the number of raters and how
they are assigned to subjects or the number of subjects. We have decided to
focus on the following 3 specific aspects of study design with a direct impact
on the statistical properties of agreement coefficients:

• Who are the subjects and raters targeted by the experiment?

• How many subjects and raters should be recruited for the study? How
will they be selected?

• How would selected raters be assigned to the selected subjects?

Defining the Target Rater and Subject Populations

The target here represents those raters and subjects to whom the re-
searcher would like to apply the study findings. These target groups will
often be too large to be included in an inter-rater reliability experiment in
their entirety. In this case, only a sample of subjects and/or raters care-
fully selected from their respective groups will participate in the experiment.
Regardless of who participate in the experiment, we still want to be able
to extrapolate our results to the entire target populations of raters and sub-
jects. Let us assume that the target rater universe contains R raters, and the
target universe of subjects N subjects, although R and N are often unknown
in practice.

Choosing Participating Raters and Subjects

Cost, time, and other practical constraints often lead researchers to use
subsets from target subject and rater universes. Let r and n be respectively
the number of raters and subjects who will participate in the experiment.
Since the selection of samples does not change our focus on the predetermined
target populations, we will want the r selected raters, and the n selected
subjects to be representative samples of their respective populations. This is
often achieved by randomizing the sample selection process, and by ensuring
an adequate number of units in the sample. In section 7, we will provide
guidelines for determining these sample sizes.
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Assigning Raters to Subjects

Once the participating raters and subjects are identified, the researcher
must answer the question as to “what rater must rate what subject?” In this
paper we will confine ourselves to the following 3 designs:

(i) The fully-crossed design with no sampling of raters (let’s refer to this
design as “FC1”)
Under this design, each of the r participating raters (with r = R) must
rate all n participating subjects (see Table 1). Agreement coefficients
are subjected to a single source of a variation due to the random se-
lection of subjects. fc1 stands for “Fully Crossed” with 1 source of
variation.

TABLE 1

Table 1: FC1 Design: Each rater of interest scores all sampled (Only subjects
1, 2, 4, and 6 are selected in the sample) subjects

Subjects Rater 1 Rater 2 Rater 3

Subject 1 X X X
Subject 2 X X X
Subject 3
Subject 4 X X X
Subject 5
Subject 6 X X X

(ii) The fully-crossed design with a sample of raters (let’s refer to this design
as “FC2”)
Under this plan, each of the r participating raters must rate all n
participating subjects (see Table 2). The main difference from the FC1

design is the new source of variation due to the random selection of
raters in addition to the random selection of subjects. fc2 stands for
Fully-Crossed with 2 sources of variation.

TABLE 2
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Table 2: FC2 Design: Each sampled (Raters 2, 4, and 5 are selected in the
rater sample, while subjects 1, 2, 4, and 6 are selected in the subject sample)
rater scores all sampled subjects

Subjects Rater 1 Rater 2 Rater 3 Rater 4 Rater 5

Subject 1 X X X
Subject 2 X X X
Subject 3
Subject 4 X X X
Subject 5
Subject 6 X X X

(iii) The partially-crossed design with a 2-rater sample per subject (let’s refer
to this design as PC2 for Partially Crossed with 2 sources of variation)
Under this plan, each of the n subjects is assigned 2 raters randomly
chosen from the target population of R raters of interest. This design
is cost-effective since it minimizes the number of ratings per subject.

TABLE 3

Table 3: PC2 Design: Each sampled subject is scored by 2 raters randomly
chosen from the universe of all raters of interest

Subjects Rater 1 Rater 2 Rater 3

Subject 1 X X
Subject 2 X X
Subject 3
Subject 4 X X
Subject 5
Subject 6 X X
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3 Using the Standard Error for Interpreting

the Magnitude of Agreement Coefficients

Researchers commonly use benchmark scales to interpret the magnitude of
agreement coefficients. One such benchmark scale was proposed by Landis
and Koch (1977) and described in Table 4. An agreement coefficient that
falls between 0.41 and 0.60 for example is considered to be “Moderate.” This
simplistic interpretation ignores the important fact that an estimated agree-
ment coefficient is calculated with a margin of error, making it impossible
to categorize it with certainty. It can only be done with some degree of
certainty. Therefore, the correct interpretation of these coefficients must be
probabilistic.

If two agreement coefficients have the exact same magnitude with one
having a much larger standard error, intuitively one would expect the co-
efficient with the smaller standard error to be more likely to belong to the
high-end intervals of the benchmark scale. Consider two agreement coeffi-
cients κ̂1 = 0.67 with standard error se = 0.15, and κ̂2 = 0.67 with standard
error s.e. = 0.04. Based on Table 4, one would naturally qualify both agree-
ment coefficients as being “Substantial” since 0.67 falls within the 0.61-0.8.
Considering that the estimated agreement coefficient 0.67 is calculated with
a margin of error, the validity of such a statement comes into question. A
more elaborate approach for interpreting κ̂1 and κ̂2 and which is based on the
notion of cumulative interval membership probability (CIMP) is summarized
in Table 5.

The “Cumulative Probability” Approach to Benchmarking

It follows from Table 5 that the interval membership probability (IMP)
and cumulative probability are calculated for each agreement coefficients κ̂1
and κ̂2. The interval probability represents the Normality-based probability
that the “true” agreement coefficient κ belongs to the interval in question,
and is calculated based on κ̂1 and an arbitrary interval (a, b) as follows:

P (a ≤ κ1 ≤ b) = P
[
(κ̂1 − b)/se(κ̂1) ≤ Z ≤ (κ̂1 − a)/se(κ̂1)

]
,

= Φ
[
(κ̂1 − a)/se(κ̂1)

]
− Φ

[
(κ̂1 − b)/se(κ̂1)

]
,

(1)

where Φ is the cumulative distribution function of the standard Normal dis-
tribution. The Normality of many agreement coefficients has been demon-
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strated by Gwet (2008b). Using the κ̂1 coefficient and looking at the Cumu-
lative Probability column, it appears that the “true” agreement coefficient is
Almost Perfect with a small probability probability 0.179, but is Substantial
or Almost Perfect with a cumulative probability of 0.666. It will be Moder-
ate or better with a much higher cumulative probability of 0.95. In this case
we recommend to consider the agreement κ̂1 as moderate. The general rule
consists of retaining the highest interval whose CIMP equals or exceeds the
threshold of 0.95. Using the same approach with the second agreement coeffi-
cient κ̂2, we conclude that it is substantial. As one would notice, the standard
error of the agreement coefficient plays a pivotal in the benchmarking process
based on the cumulative probability method. Therefore, it is essential to be
able to compute the correct standard error of various agreement coefficients
under the specific study design that was implemented.

TABLE 4

Table 4: Landis and Koch Kappa’s Benchmark Scale

Kappa Statistic Strength of Agreement

< 0.0 Poor
0.0 to 0.20 Slight
0.21 to 0.40 Fair
0.41 to 0.60 Moderate
0.61 to 0.80 Substantial
0.81 to 1.00 Almost Perfect

TABLE 5

4 Inter-Rater Reliability under the FC1 De-

sign

In this section, we consider the FC1 experimental design where each of the r
raters in the target rater population must rate all the n participating subjects.
We also discuss the weighted versions of 3 agreement coefficients: (1) Percent
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Table 5: Benchmarking Agreement Coefficients

κ̂1 Coefficient κ̂2 Coefficient

Interpretation Intervals Interval Cumulative Interval Cumulative
Probability Probability Probability Probability

Almost Perfect 0.8-1 0.179 0.179 0.001 0.001
Substantial 0.6-0.8 0.487 0.666 0.959 0.960
Moderate 0.4-0.6 0.284 0.950 0.040 1
Fair 0.2-0.4 0.035 0.985 0 1
Slight 0-0.2 0 0.986 0 1
Poor 0 0 1 0 1

agreement, (2) Fleiss’ generalized kappa, and (3) Gwet’s AC2. The notion of
weights was introduced by Cohen (1968) to account for partial agreement.
Let rik be the number of raters who classified subject i into category k, and
r?ik the weighted number of raters who classified subject i into category k
(or other categories representing partial agreement with k), and defined as
follows:

r?ik =

q∑
l=1

wklril, (2)

where wkl is the weight value associated with categories k and l. Some of the
equations presented here were discussed by Gwet (2008a, 2014).

• Percent Agreement
All agreement coefficients discussed in this section share the same per-
cent agreement pa given by:

pa =
1

n

n∑
i=1

pa|i, where pa|i =

q∑
k=1

rik(r
?
ik − 1)

r(r − 1)
. (3)

The variance of the percent agreement under the FC1 design is given
by,

v(pa) =
1 − f

n

1

n− 1

n∑
i=1

(pa|i − pa)
2. (4)
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• Fleiss’ Generalized Kappa
Fleiss(1971) proposed a generalized version of Cohen’s two-rater kappa
coefficient, which may be used with 3 raters or more, and is defined as
follows:

κ̂f =
pa − pe
1 − pe

, where pe =
∑
k,l

wklπkπl and πk =
1

n

n∑
i=1

rik/r. (5)

The variance of Fleiss’ generalized kappa coefficient under the fc1 de-
sign is given by,

v
(
κ̂f
∣∣fc1

)
=

1 − f

n

1

n− 1

n∑
i=1

(
κ?f|i − κ̂f

)2
,

where κ?f|i is calculated as follows:

κ?f|i = κf|i − 2(1 − κ̂f)(pe|i − pe)/(1 − pe),

and κf|i = (pa|i − pe)/(1 − pe).

Moreover, pe|i is given by,

pe|i =

q∑
k=1

π?krik/r with π?k =

q∑
l=1

wklπl. (6)

• Gwet’s AC2 Coefficient
Gwet (2008a) proposed the AC2 coefficient as a paradox-resistant alter-
native agreement statistic. This coefficient is known to be less sensitive
to trait prevalence and marginal homogeneity than other coefficients,
and is defined as follows:

κ̂g =
pa − pe
1 − pe

, where pe =
Tw

q(q − 1)

q∑
k=1

πk(1 − πk) and Tw =
∑
k,l

wkl.

(7)
Its variance under the fc1 design is given by,

v
(
κ̂g
∣∣fc1

)
=

1 − f

n

1

n− 1

n∑
i=1

(
κ?g|i − κ̂g

)2
, (8)
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where κ?g|i is obtained as follows:

κ?g|i = κg|i − 2(1 − κ̂g)(pe|i − pe)/(1 − pe),

and κg|i = (pa|i − pe)/(1 − pe).
(9)

The ith-element pe|i of the percent chance agreement is defined as fol-
lows:

pe|i =
Tw

q(q − 1)

q∑
k=1

(1 − πk)rik/r. (10)

The fc2 design does not affect the way agreement coefficients are calcu-
lated. However, the variance under the fc2 design has two components: a
subject component and a rater component. The subject component is the
variance under the fc1 design, and the rater component is calculated us-
ing the jackknife method previously advocated by Kraemer (1979). For the
AC2 coefficient for example, the variance under the fc2 design is defined as
follows:

v
(
κ̂g
∣∣fc2

)
= v
(
κ̂g
∣∣fc1

)
+ vr

(
κ̂g
)
, (11)

where v
(
κ̂g
∣∣fc1

)
the subject variance component is given by equation 8, and

the rater variance component given by,

vr
(
κ̂g
)

=
r − 1

r

r∑
g=1

(
κ̂
(−g)
g − κ̂g

)2
, (12)

with r being the number of raters. Note that κ̂
(−g)
g represents the AC2 coef-

ficient evaluated after removing all rater g’s ratings from the sample.

5 Inter-Rater Reliability under the PC2 De-

sign

In this section, we consider inter-rater reliability experiments that aim at
quantifying the extent of agreement among 3 raters or more (i.e. r ≥ 3).
Under the pc2 design, we assume that the selection of pairs of raters is done
with replacement, which opens up the possibility that the same pair might
be selected more than once and have to score 2 subjects or more.
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Cohen (1960), and Fleiss, Cohen, and Everitt (1969) made their deriva-
tions under the assumption that a single pair of raters rated all n subjects.
The same can be said about Scott’s Pi. Although the form taken by many
multiple-rater agreement coefficients under the pc2 design may look simi-
lar to their two-rater versions, they are different. Using the names Cohen’s
kappa, or Scott’s Pi, or Gwet’s AC2 under the PC2 design when different
pairs of raters rate different subjects can be seen as an abuse of language.

The variance under the PC2 design must be carefully derived and ex-
plained. For the sake of clarity, we will first present the exact variance (also
referred to as population or theoretical variance) before showing how it can
be calculated from actual ratings. The exact variance is the sum of two com-
ponents: (1) the subject variance due to the sampling of subjects, and (2) the
rater variance due to the random assignment of pairs of raters to subjects.

• Fleiss’ Generalized Kappa
Fleiss’ generalized kappa under the pc2 design looks like Scott’s Pi and
is formulated as follows:

κ̂2f =
pa − pe
1 − pe

, where pa =

q∑
k=1

q∑
l=1

wklpkl, pe =

q∑
k,l

wklπkπl. (13)

Unlike the classical Scott’s Pi coefficient under the fc1 design, this
coefficient is calculated using 2n ratings produced not by a single pair
of raters, but by several pairs of raters randomly assigned to subjects.
Under the fc1 design pkl for example represents the relative number
of subjects classified into categories k and l by the only 2 raters who
participated in the experiment. Under the pc2 design, pkl represents
the relative number of subjects classified into categories k and l by the
different pairs of raters who rated them. The exact variance of κ̂2f
under the pc2 design is given by,

V (κ̂2f
∣∣pc2) = V

(
κ̂f
∣∣fc1

)
+ S2/n, (14)

where V
(
κ̂f
∣∣fc1

)
is the variance under the fc1 design of Fleiss’ co-

efficient (c.f. equation 5), and S2/n the variance component due to
the random assignment of raters. These two statistics are defined as
follows:

V
(
κ̂f
∣∣fc1

)
=

1 − f

n

1

N − 1

N∑
i=1

(
κ?f|i − κf

)2
, S2 =

1

N

N∑
i=1

S2
i , (15)
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where the ith linear component κ?f|i of Fleiss’ coefficient is given by equa-

tion 4, while S2
i is the rater variance induced by the random assignment

of a pair of raters to subject i. A mathematical proof of equation 14
can be found in Section 1 of the Supplemental Materials.

Note that κ?f|i can also be evaluated using only the ratings generated

by a single pair of raters named g, in which case it is denoted by κ
?(g)
f|i .

To obtain S2
i , for a specific subject i one needs to compute a series of

values κ
?(g)
f|i for all r(r − 1)/2 pairs of raters that can be formed out of

the group of r raters, and to compute the variance of that series.

The theoretical variance under the pc2 design of Fleiss’coefficient given
by equation 14 was translated into fc1 design-based measures to facil-
itate comparison between both designs. This equation shows that the
use of the pc2 design results in an increase of variance (i.e. a loss of
precision) compared to the fc1 design. Since only one design can be
implemented at a time, equation 14 is purely definitional and cannot
be used to compute the variance of Fleiss’ kappa with actual ratings
collected under the pc2 design. This calculation can be done using the
following expression:

v(κ̂2f
∣∣pc2) =

1 − f

n

1

n− 1

∑
i,g

(
κ
?(g)
f|i − κ̂2f

)2
, (16)

where κ
?(g)
f|i comes from equation 4 all calculations being based on the

specific pair of raters g that was assigned to subject i. Simulation re-
sults from section 6 prove the validity of both equations 14 and 16.

• Gwet’s AC2

Under the pc2 design, the weighted AC1 also known as AC2 takes the
following form:

κ̂2g =
pa − pe
1 − pe

, where pa =

q∑
k=1

q∑
l=1

wklpkl, pe =
tw

q(q − 1)

q∑
k=1

πk(1−πk),

(17)
where tw is the summation of all weights. This coefficient is calculated
using 2n ratings generated by several pairs of raters randomly assigned
to subjects. The theoretical variance of Gwet’s AC2 coefficient under
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the pc2 design is given by (see proof in Section 2 of the Supplementary
Materials),

V
(
κ̂2g
∣∣pc2

)
= V

(
κ̂g
∣∣fc1

)
+ S2/n, (18)

where κ̂g is the multiple-rater version of Gwet’s AC2 coefficient of equa-
tion 7 under the fc1 design, V

(
κ̂g
∣∣fc1

)
is the variance of AC2 under

the fc1 design (estimated by equation 8), and S2/n the variance com-
ponent due to the random assignment of raters to subjects. These two
statistics are defined as follows:

V
(
κ̂g
∣∣fc1

)
=

1 − f

n

1

N − 1

N∑
i=1

(
κ?g|i − κg

)2
, and S2 =

1

N

N∑
i=1

S2
i , (19)

where κ?g|i, the ith linear component of Gwet’s coefficient is given by

equation 9, while S2
i is the rater variance induced by the random as-

signment of a pair of raters to subject i. S2
i is obtained for a specific

subject i, by calculating a simple variance of the series of values κ
?(g)
g|i

for all pairs of raters g = 1 · · · r(r− 1)/2 that can be formed out of the
group of r raters.

Again equation 18 is primarily definitional, and the variance should be
calculated using the following equation:

v
(
κ̂2f
∣∣pc2

)
=

1 − f

n

1

n− 1

∑
i,g

(
κ
?(g)
g|i − κ̂2g

)2
, (20)

where all calculations are based on the specific pair of raters g that was
assigned to subject i under the pc2 design. Simulation results from
section 6 confirm the validity of both equations 18 and 20.

• Percent Agreement
The variance of the percent agreement pa is higher under the pc2 design
than under the traditional fc1 design. In fact,

V
(
p2a
∣∣pc2

)
= V

(
pa
∣∣fc1

)
+ S2a/n, where S2a =

1

N

N∑
i=1

Pa|i(1 − Pa|i).

(21)
Under the fc1 design, pa is given by equation 3, and is defined as in
equations 13, and 17 under the pc2 design. If the sampling fraction f =
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n/N is negligible as is often the case, then V
(
pa
∣∣pc2

)
= Pa(1 − Pa)/n,

where Pa is the average of all pairwise percent agreement coefficients
calculated from the r raters in the sample. The proof of this results
can be found in Section 3 of the Supplementary Materials. Under the
pc2 design, this variance can be estimated with the following equation:

v
(
p2a
∣∣pc2

)
= pa(1 − pa)/n. (22)

6 Monte-Carlo Simulations

The Monte-Carlo experiment presented in this section focuses on the pc2

design and aims at the following two goals:

(i) Demonstrate the validity of the theoretical variances of equations 14,
18, and 21,

(ii) Demonstrate the validity of the estimated variances under the pc2 de-
sign (see equations 16, 20, and 22).

To achieve these two goals, we set up a Monte-Carlo experiment as follows:

(a) We considered a hypothetical target population of N = 2500 subjects
from which small samples of n subjects are selected and rated by r
raters using a 3-item Likert scale (q = 3). We investigated 9 n values
ranging from 10 to 50 by increment of 5, and 2 r values 3, and 5.

(b) We created 2500 ratings for each of the r raters to have a population in
the form of a 2500×r matrix of ratings (i.e. we created one population
of 7,500 ratings for r = 3, and a second population of 12,500 ratings
for r = 5), the rating being one of the values 1, 2, or 3. These ratings
were created randomly under the constraint that they must achieve a
percent agreement that exceeds 0.65, an arbitrary number that ensures
a certain level of agreement among raters.

(c) For each n value we randomly selected 5,000 different sets of n rows
from the original 2,500×r matrix of ratings. Each selected set contained
n rows and r columns and represents a simulated sample under the fc1

design.
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(d) To simulate a pc2 sample when r = 5 for example, we took each fc1

sample and only kept 2 ratings per subject randomly chosen from the
5 available. This process was implemented independently for each row.
A simulated fc1 sample contains n × 5 ratings while a simulated pc2

sample contains n × 2 ratings extracted from the fc1 sample. Note
that for each fc1 sample, we simulated a total of 5,000 pc2 samples
(or less depending on the maximum number of pc2 samples that can
be formed), which are used to compute the rater component of the
variance.

(e) To conduct the Monte-Carlo experiment, we have at our disposal 5,000
fc1 samples and about 25,000,000 pc2 samples (i.e. 25,000,000 =
5,000 × 5,000). One may see this as a 5,000 × 5,000 table where each
cell contains an n× 2 pc2 sample of ratings that could be used to com-
pute an agreement coefficient. For any given agreement coefficient one
can always produce a 5,000 × 5,000 table where each cell contains an
agreement coefficient estimate (let us refer to it as the coefficient’s MC
table). The MC table is used to produce various statistics associated
with this experiment.

Computing the Simulated “Exact” PC2 Variance

The simulated “exact” or Monte-Carlo (MC) pc2 variance is obtained by
summing the MC subject and rater variances. For a given agreement coeffi-
cient, the MC subject variance is calculated as the variance of the 5,000 MC
table’s row averages, while the MC rater variance is the variance of the 5,000
MC table’s column averages. For r = 3 the MC subject variance accounted
for about 68% of total variance. That percentage went down to about 54%
when r = 5.

Computing the Expectation of the PC2 Variance Estimate

The expected value of the pc2 variance estimate is calculated by averaging
all 25,000,000 variance estimates calculated from the 25,000,000 pc2 samples
using the appropriate variance equations 16, 20, or 22. To demonstrate the
validity of these equations, we need to show that the expected value of the
pc2 variance estimates is sufficiently close to the MC variance.

Computing the Theoretical PC2 Variance

17



Let us consider for example the theoretical variance of Fleiss’ coefficient
under the pc2 design that is given by equation 14. Both components of this
equation are calculated according to equation 15 using the entire population
of ratings created in step (b). Based on the theoretical variance, the subject
component of the variance accounted for about 68% of total variance when
r = 3, and for about 54% when r = 5. This confirms what was previously
observed when the MC variance was used to prove the validity of equations
14, 18, and 21.

Computing the 95% Confidence Interval Coverage Rate

The interval coverage rate represents the percentage of all 25,000,000 or
so pc2 samples that produced 95% confidence intervals containing the “true”
agreement coefficient calculated using the entire population of ratings of step
(b).

If follows from both Tables 6 and 7 that the exact variance, the expected
variance estimate, and the theoretical variance are all very close. In fact,
when the number of raters is 3 (c.f. Table 6) the AC2 coefficient shows a
maximum pairwise difference between these variances that varies from 0.16%
for n = 10 to 0.01% for n = 50. For Fleiss’ generalized kappa this maximum
pairwise difference varies from 0.70% for n = 10 to 0.02% for n = 50, while
a similar range associated with the percent agreement goes from 0.14% for
n = 10 to 0.0% for n = 50. Table 7 shows similar results when the number
of raters is 5. These results prove that all variance expressions presented in
the previous section are accurate.

It follows from Tables 6, and 7 that the coverage rates of the 95% confi-
dence intervals vary typically from 80% for small samples to 93% for larger
samples. Although the coverage rate improves as the sample size increases,
it generally remains below its nominal value of 95% particularly when the
sample size is an even number. This can be partially explained by the small
number of replicates used in the Monte-Carlo experiment. For example when
the sample size is n = 10, one can form approximately 2.5 × 1027 =

(
2500
10

)
fc1 samples. Our experiment is limited to 5,000 fc1 samples. Moreover,
when the number of raters is 3 then each fc1 sample of size 10 could produce
59,049 pc2 samples (i.e. 310 = 59, 049). This number increases very fast
with the fc1 sample size, and will exceed 3 billion for an fc1 sample size of
20. Our Monte-Carlo experiment is limited to 5,000 pc2 samples in order
to reduce the execution time of our simulation program, which was written

18



using the SAS/IML
c© programming language and listed in Section 4 of the

Supporting Materials.

TABLE 6

TABLE 7

7 Sample Size Requirements

This section provides guidelines for determining the optimal number of sub-
jects and raters when designing an inter-rater reliability experiment. The
approach retained consists of finding the smallest sample size that yields an
error margin not exceeding the prescribed level.

The error margin E associated with an agreement coefficient κ̂ is defined
under a particular study design d (i.e. fc1 or pc2) as a product of the critical
value zα and the standard error. That is,

E = zα

√
V
(
κ̂
∣∣d). (23)

For a confidence level as high as 90%, one gets α = (1 − 0.90)/2 = 0.05, and
the associated critical value z0.05 = 1.645 represents the 95th percentile of the
standard Normal distribution where 95 = 100(1 − α).

Agreement coefficients however are complex expressions with several in-
tertwined factors that affect the size of the error margin making it difficult
to find a useful upper bound for the variance. Previous known attempts at
this problem such as Donner (1999), Altaye et al. (2001b), or Donner and
Rotondi (2010) rely on theoretical models and the assumption of a binary
outcome for simplicity.

To get around this problem, we decided to proceed by experimentation
using a pure nonparametric approach which stays as close as possible to what
practitioners do. For n subjects, r raters, and q categories, we used the Evolu-
tionary nonlinear algorithm, a standard mathematical optimization method
implemented in MS Excel’s Solver to obtain the optimal distribution of raters
by subject and category. This optimal n × r table maximizes the variance
of a given agreement coefficient. The experiment was repeated for n = 10 to
n = 100 by increment of 5, for r = 2, 3, 4, 5, 6, 7, for q = 2, 3, 4, 5, 6, and 7,
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and for Fleiss’ kappa, Gwet’s, AC2, and the percent agreement. The results
obtained and shown in Tables 3 through 10 in Section 5 of the Supplementary
Materials, were later used as input in the software CurveExpert c© to express
the maximum variance as a simple function of n, r, and q. That function is
then used to compute the optimal number of subjects n.

7.1 Sample Size Requirements for the percent agree-
ment pa

Our experiment has revealed that if there are fewer raters than categories
then the maximum variance of the percent agreement solely depends upon
the number of subjects n, does not depend on the particular study design,
and is well approximated by the equation Vm

(
pa
)

= 1/(4.0081n − 4.0532)
where Vm

(
pa
)

denotes the maximum variance under the pc2 design. For the
sake of simplicity, one may instead use the equation Vm

(
pa
)

= 1/
[
4(n− 1)

]
,

which will yield valid upper bounds for the variance. However, if the number
of raters exceeds the number of categories, then the upper bounds of the
variance depends on the study design D, the number of raters r, and the
number of categories q. If Vm

(
pa
∣∣D) is the maximum variance of pa under a

particular design D, then it can be formulated as follows:

Vm
(
pa
∣∣D) =


1/(4.0081n− 4.0532) if r ≤ q for any design D,

1/(a1n+ b1) if r > q and D ≡ fc1,

1/(a2n+ b2) if r > q and D ≡ pc2,

(24)

where a1 and b1 are 2 parameters related to the fc1 design and given in table
8, whereas a2 and b2 are 2 parameters related to the pc2 and given in table
9.

TABLE 8

TABLE 9

Equation 24 could be used to calculate the number of subjects required
to achieve a predefined precision level. Let E be the prescribed error margin
that must be achieved at a predetermined confidence level (0.90 is one of
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the standard values often used in the literature, 0.95 being the other). The
subject sample size n required to achieve it is given by the following equation:

n =
z2α/E

2 − b

a
. (25)

Moreover, a and b will take the values a1 and b1 or a2 and b2 depending
on whether the sample size is determined based the fc1 design or the pc2

design.
As an example, Table 10 shows the minimum number of subjects required

by the magnitude of the error margin and the number of raters when the
number of categories is limited to 2.

TABLE 10

It follows from Table 10 that the number of subjects required to achieve
a specified error margin is often close to twice higher under the pc2 design
than under the fc1 design, when the number of raters exceeds the number
of categories.

7.2 Sample Size Requirements for the AC2

Our experiment has also revealed that when the number of categories reaches
5 or exceeds it, the maximum variance of AC2 becomes less dependent on
the number of raters, and is primarily affected by the number of subjects.
The maximum variance of AC2 has been been modelled as follows:

Vm
(
κ̂2g
∣∣D) =

{
1/(a1n+ b1) if D ≡ fc1,

1/(a2n+ b2) if D ≡ pc2,
(26)

where n is the number of subjects, a1 and b1 are the parameters associated
with the fc1 design, while a2 and b2 are the parameters associated with the
pc2 design. These parameters are functions of the number of raters r and
number of categories q, and are shown in Table 11.

TABLE 11

Suppose that the researcher wants to determine the number of subjects
n needed to achieve a specified error margin E. For given r and q values, the
optimal n is calculated as follows:

n =
z2α/E

2 − b(r, q)

a(r, q)
, (27)
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where a(r, q) and b(r, q) equal a1(r, q) and b1(r, q), or a2(r, q) and b2(r, q) of
Table 11 depending on the study design. For illustration purposes, Table 12
shows the minimum number of subjects required, by the magnitude of the
90% error margin and the number of raters. This table also reveals that the
AC2 coefficient is not impacted much by the design.

TABLE 12

7.3 Sample Size Requirements for Fleiss’ Generalized
Kappa

Determining required sample sizes for the generalized kappa of Fleiss or Con-
ger, for Cohen’s kappa (Cohen, 1960) or Scott Pi (Scott, 1955) can be quite
problematic. In fact, our experiment has revealed that when the number of
raters is 2, even with 100 subjects one can find a set of ratings that produces
a standard error for Scott’s Pi or Cohen’s kappa as high as 0.32 resulting in
a 95% error margin of 0.63. Such an error margin is unduly high, and makes
the agreement coefficient useless. Even with 7 raters and 100 subjects, we
were still able to identify a set of ratings that led to a standard error of 0.26
for Fleiss’ generalized kappa. This corresponds to a high 95% error margin
of 0.51. Consequently, when using Fleiss’ generalized kappa or even the basic
two-rater Cohen’s kappa, it is almost impossible to guarantee a reasonably
small error margin at the time the study is being designed. An acceptable
error margin can still be obtained in practice with these coefficients when
the extent of agreement among raters is moderate or large and spread across
several categories.

These facts show that no matter how carefully an inter-rater reliability
study is designed, the risk of obtaining a Fleiss’ generalized kappa coefficient
that is unusable can never be completely eliminated.

TABLE 13

8 Concluding Remarks

The objective of this paper was to raise awareness among researchers of the
importance of inter-rater reliability study design by demonstrating the ex-
tent to which it can affect how the results are interpreted. We recommended
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the use of standard error in conjunction with the benchmark scales found
in the literature to interpret the magnitude of inter-rater reliability coeffi-
cients. Guidelines for sample size determination were provided for selected
agreement coefficients.

While the fully-crossed design (fc1) yields the lower standard error than
the two-rater partially-crossed design (pc2), it is also the most costly with
respect to the total number of ratings produced for a given number of sub-
jects. Regarding the pc2 design, we emphasized the importance of having
a systematic approach for assigning raters to subjects. Our experiment re-
vealed that the percent agreement is independent of the design, the number
of categories and the number of raters only if the number of raters is smaller
than the number of categories. Otherwise, the pc2 design will require about
twice as many subjects than the fc1 design for the same error margin. On
the other hand, the AC2 coefficient is not affected much by the particular de-
sign being used, although the number of subjects required to achieve a given
error margin is slightly higher for the pc2 design than for the fc1 design.

Methods for determining optimal sample sizes solely based on techniques
of mathematical optimization were discussed. These techniques consist of
looking for the specific distribution of raters by category and subject, which
maximizes the agreement coefficient variance for a given number of subjects
and categories. The main advantage of this approach is to not rely on any
hypothetical statistical model that may be difficult to validate. Instead,
it uses Evolutionary algorithms to find the worst case scenario (i.e. the
highest standard error) that could occur in practice, and to recommend the
appropriate number of subjects that will keep the associated error margin
below a specified threshold. In practice, the optimal number of subjects
will generally yield an error margin well below its predicted maximum value.
It is because a high extent of agreement among raters further reduces the
standard error, and our sample size calculation method does not include a
hypothesized magnitude for the agreement coefficient.

A key finding of our research is that unless special and restrictive as-
sumptions are made, the researcher cannot prevent Fleiss’generalized kappa
nor Conger’s version of it from producing an unduly high error margin. For
proponents of the kappa coefficient, further research may be needed to figure
out what may be done at the design stage to guarantee an acceptable error
margin.
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Table 8: Parameters a1 and b1 of the maximum variance of pa under the fc1

design (equation 24), as a function of the number of categories q and the
number of raters r

Number of raters (r)

q Parameter 2 3 4 5 6 7

2 a1 4.0081 9.0184 9.0184 11.1337 11.1337 12.2749
b1 -4.0532 -9.1189 -9.1189 -11.2588 -11.2588 -12.4128

3 a1 4.0081 4.0081 5.7717 6.2627 6.2627 6.9046
b1 -4.0532 -4.0532 -5.8366 -6.3331 -6.3331 -6.9822

4 a1 4.0081 4.0081 4.0081 4.9483 5.3363 5.4555
b1 -4.0532 -4.0532 -4.0532 -5.0039 -5.3962 -5.5168

5 a1 4.0081 4.0081 4.0081 4.0081 4.6012 4.8963
b1 -4.0532 -4.0532 -4.0532 -4.0532 -4.6529 -4.9514

6 a1 4.0081 4.0081 4.0081 4.0081 4.0081 4.4190
b1 -4.0532 -4.0532 -4.0532 -4.0532 -4.0532 -4.4686

7 a1 4.0081 4.0081 4.0081 4.0081 4.0081 4.0081
b1 -4.0532 -4.0532 -4.0532 -4.0532 -4.0532 -4.0532
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Table 9: Parameters a2 and b2 of the maximum variance of pa under the pc2

design (equation 24), as a function of the number of categories q and the
number of raters r

Number of raters (r)

q Parameter 2 3 4 5 6 7

2 a2 4.0081 4.4434 4.4434 4.6916 4.6916 4.8234
b2 -4.0532 -2.0095 -2.0095 -1.7251 -1.7251 -1.6087

3 a2 4.0081 4.0081 4.0888 4.1350 4.1350 4.2017
b2 -4.0532 -4.0532 -2.8568 -2.6664 -2.6664 -2.4633

4 a2 4.0081 4.0081 4.0081 4.0276 4.0532 4.0623
b2 -4.0532 -4.0532 -4.0532 -3.2801 -3.0607 -3.0009

5 a2 4.0081 4.0081 4.0081 4.0081 4.0117 4.0248
b2 -4.0532 -4.0532 -4.0532 -4.0532 -3.5170 -3.3128

6 a2 4.0081 4.0081 4.0081 4.0081 4.0081 4.0069
b2 -4.0532 -4.0532 -4.0532 -4.0532 -4.0532 -3.6611

7 a2 4.0081 4.0081 4.0081 4.0081 4.0081 4.0081
b2 -4.0532 -4.0532 -4.0532 -4.0532 -4.0532 -4.0532
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Table 10: Minimum number of subjects required to achieve the prescribed
90% error margin E for the percent agreement pa when the number of cate-
gories is 2, and the number of raters r = 3, 5, 7

fc1 Study Design pc2 Study Design

E r < q r = 3 r = 5 r = 7 r = 3 r = 5 r = 7

0.01 6,752 3,002 2,431 2,206 6,090 5,768 5,611
0.03 751 334 271 246 677 641 624
0.05 271 121 98 89 244 231 225
0.07 139 62 51 46 125 118 115
0.10 69 31 25 23 61 58 56
0.13 41 19 15 14 36 34 34
0.15 31 14 12 11 28 26 25
0.17 24 11 9 9 22 20 20
0.20 18 9 7 7 16 15 14
0.25 12 6 5 5 10 10 9
0.30 9 4 4 3 7 7 7
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Table 11: Parameters a1, b1, a2, and b2 asssociated with the maximum vari-
ance of the AC2 agreement coefficient

fc1 Design pc2 Design

r q a1(r, q) b1(r, q) a2(r, q) b2(r, q)

2 2 0.7746 -0.6381 0.7746 -0.6381
3 2 1.4231 -1.5276 1.0448 -0.6650
4 2 1.7429 -1.4357 1.1045 -0.4834
5 2 1.8487 -1.7780 1.1529 -0.5404
2 3 1.3463 -1.3040 1.3419 -1.2551
3 3 1.4860 -1.3614 1.4734 -1.3363
4 3 2.0331 -1.9289 1.6377 -1.2217
5 3 2.1826 -2.3794 1.6401 -1.1497
2 4 1.8617 -1.9402 1.8547 -1.8627
3 4 1.8725 -2.0524 1.8563 -1.8809
4 4 1.9675 -1.8709 1.9595 -1.8548
5 4 2.3815 -2.2838 2.0533 -1.7041
2 5 2.2204 -2.2957 2.2141 -2.2266
3 5 2.2286 -2.3576 2.2130 -2.1896
4 5 2.2479 -2.5736 2.2275 -2.3738
5 5 2.3010 -2.2234 2.2950 -2.2046

Table 12: Minimum number of subjects required to achieve the specified
90% error margin for the AC2 agreement coefficient, when the number of
categories is q = 4

fc1 Design pc2 Design

E r = 2 r = 3 r = 4 r = 5 r = 3 r = 4 r = 5

0.05 585 579 551 455 584 553 528
0.08 229 227 216 179 229 217 207
0.10 147 146 138 115 147 139 133
0.15 66 65 62 51 66 62 59
0.20 37 37 35 29 37 35 34
0.25 24 24 23 19 24 23 22
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Table 13: Maximum variance of Fleiss’ generalized kappa coefficient under
the fc1 and pc2 designs as a function of the number of subjects n and number
of raters r

fc1 design pc2 design

n r = 2 r = 3 r = 4 r = 5 r = 3 r = 4 r = 5

10 0.1431 0.1171 0.1033 0.0946 0.3091 0.2225 0.1992
15 0.1243 0.1054 0.0949 0.0885 0.2991 0.2135 0.1877
20 0.1170 0.1001 0.0909 0.0853 0.2944 0.2093 0.1824
25 0.1130 0.0971 0.0886 0.0835 0.2917 0.2068 0.1794
30 0.1104 0.0952 0.0871 0.0822 0.2899 0.2052 0.1774
35 0.1086 0.0939 0.0860 0.0813 0.2886 0.2041 0.1760
40 0.1073 0.0929 0.0852 0.0807 0.2877 0.2032 0.1749
45 0.1063 0.0921 0.0846 0.0802 0.2869 0.2026 0.1741
50 0.1055 0.0915 0.0841 0.0797 0.2864 0.2021 0.1735
55 0.1048 0.0910 0.0837 0.0794 0.2859 0.2017 0.1730
60 0.1043 0.0906 0.0834 0.0791 0.2855 0.2013 0.1726
65 0.1038 0.0903 0.0831 0.0789 0.2852 0.2010 0.1722
70 0.1034 0.0900 0.0829 0.0787 0.2849 0.2008 0.1719
75 0.1031 0.0897 0.0827 0.0785 0.2846 0.2005 0.1716
80 0.1028 0.0895 0.0825 0.0784 0.2844 0.2003 0.1714
85 0.1026 0.0893 0.0823 0.0782 0.2842 0.2002 0.1712
90 0.1023 0.0891 0.0822 0.0781 0.2841 0.2000 0.1710
95 0.1021 0.0890 0.0821 0.0780 0.2839 0.1999 0.1708
100 0.1020 0.0888 0.0819 0.0779 0.2838 0.1998 0.1707
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