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ABSTRACT 

Krippendorff’s alpha coefficient is a statistical measure of the extent of agreement among coders, 

and is regularly used by researchers in the field of content analysis. This coefficient is known to 

involve complex calculations, making the evaluation and its sampling variation possible only 

through resampling methods such as the bootstrap.  In this paper, we propose a simple procedure 

for calculating Krippendorff’s alpha that involves simple calculations similar to those needed to 

obtain the Pi coefficient of Fleiss (1971). We will propose a close expression for computing its 

variance, as well as a new interpretation based on the notion of weighting. Additionally, we will 

present some alternative agreement coefficients, which address the classical problem of the 

paradoxes associated with Cohen’s Kappa, and described by Cicchetti and Feinstein (1990) and 

Feinstein and Cicchetti (1990).  
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1. INTRODUCTION 

 

The data that we collect during a research project generally reflect our understanding of the 

topic under investigation and our interpretation of the phenomena being observed.  Our judgment 

however, will often not be in total agreement with what our peers are doing.  Such discrepancies 

can be detrimental to the integrity of scientific inquiries, which require that the data associated 

with the same subjects be comparable regardless of their sources, if they are of the same type.  

This property guarantees the reproducibility of scientific data, and must be a key objective of any 

data quality control program. 

The inter-rater reliability coefficient is a statistical measure that quantifies the extent of 

agreement among observers.  Numerous statistics have been proposed in the literature for 

achieving this quantification goal. Many of these statistics take the form (𝑝𝑎 − 𝑝𝑒)/(1 − 𝑝𝑒), 

where 𝑝𝑎 is the percent agreement and 𝑝𝑒, the percent chance agreement.  These coefficients are 

generally based on a common formulation of the percent agreement, and differ noticeably on 

their formulation of the percent chance agreement.  

Scott (1955) proposed the  (read Pi) coefficient for quantifying the extent of agreement between 

2 raters.  Cohen (1960) later criticized Scott’s proposal on the ground that its chance-agreement 

does not use each rater’s specific classification propensities into categories, and proposed the  

(read Kappa) coefficient. The kappa coefficient, all its flaws notwithstanding remains widely 

used across many research fields. Cicchetti and Feinstein (1990), Feinstein and Cicchetti (1990) 

described several methodological problems associated with Kappa. Other agreement coefficients 

often used by researchers in various fields of research, include the Krippendorff α (read alpha) 

(see Krippendorff 1980, 2004a), Brennan-Prediger (1981) coefficient, Gwet’s 𝐴𝐶1 (2008a), and 

more. Banerjee et al. (1999) provide a good literature review.    

The first goal of this paper is to provide a simple approach for computing and interpreting the 

Krippendorff’s alpha coefficient and its variance for researchers who rely on it to quantify the 

extent of agreement among raters.  The new and simplified approach will be illustrated using the 

data set provided by Hayes and Krippendorff (2007). The second goal of this paper is to present 

an alternative agreement coefficient that addresses the paradox problem of Cicchetti and 

Feinstein (1990).  
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2. THE KRIPPENDORFF’S ALPHA 

 

 

The procedure for computing Krippendorff’s alpha is often described in terms of coincidence 

tables and difference functions (see Krippendorff, 2007).  We will stay away from these two 

concepts, and replace them with the notions of agreement tables and weights, which are more 

commonly-used in the inter-rater reliability literature.  We will formulate the alpha coefficient 

using the standard kappa-like form similar to the weighted Kappa coefficient introduced by 

Cohen (1968).  

 

Consider a reliability experiment where 𝑟 observers classify 𝑛 objects into 𝑞 categories. As is 

often the case in practice, some observers may not rate all subjects.  This situation creates the 

possibility of having missing values in the dataset.  Since missing values are common in practice, 

a good agreement coefficient is expected to handle them properly.  

 

The general form of the alpha coefficient is defined as follows, 

 

𝛼 =
𝑝𝑎 − 𝑝𝑒
1 − 𝑝𝑒

,                                                                                        (1) 

 

where 𝑝𝑎 is the weighted percent agreement and 𝑝𝑒 the weighted percent chance agreement. The 

weighted percent agreement and weighted percent chance agreement will be formally defined 

later in this section.  A weight is typically assigned to each pair of categories (𝑘, 𝑙) and takes a 

value between 0 and 1 that decreases as the seriousness of the disagreement represented by the 2 

categories increases. When 2 observers classify a subject into the exact same category 𝑘, they are 

considered to have achieved full agreement. The weight 𝑤𝑘𝑘 associated with the pair (𝑘, 𝑘) is 

then assigned the maximum value of 1. If the 2 observers classify a subject into 2 distinct 

categories (𝑘 ≠ 𝑙),  then the pair is assigned a weight smaller than 1 representing the fraction of 

full agreement (or partial agreement) this particular disagreement is credited of.  See Cohen 

(1968) for a discussion of the notion of weighting in the context of inter-rater reliability. The 

different weights proposed for the Krippendorff’s alpha coefficient are defined in section 3. 

 

To fix ideas, let us consider the reliability data described in Table 1 that was initially considered 

by Krippendorff (2007). This table summarizes the outcome of an experiment where 4 observers 

A, B, C, and D classified 12 units into one of 5 possible categories labeled as 1, 2, 3, 4, and 5.  It 

appears that none of the 4 observers rated all 12 units, which has produced a table with missing 

ratings. 
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TABLE 1 

Ratings assigned by 4 raters A, B, C, and D to 12 Units 

Unit 
Observers 

A B C D 

1 1 1  1 

2 2 2 3 2 

3 3 3 3 3 

4 3 3 3 3 

5 2 2 2 2 

6 1 2 3 4 

7 4 4 4 4 

8 1 1 2 1 

9 2 2 2 2 

10  5 5 5 

11   1 1 

12   3  

 

The extent of agreement among the 4 observers could be quantified with the Krippendorff’s 

alpha coefficient as described in the following steps: 

 

STEP 1: Constructing the Agreement Table 

This first step consists of creating a table that displays the distribution of observers by unit and 

category similar to Table 2. A typical entry of Table 2 is 𝑟𝑖𝑘, and represents the number of 

observers who classified unit 𝑖 into category 𝑘. It follows from the row associated with unit 8 that 

3 raters classified unit 8 into category 1.  That is 𝑟81 = 3. 

The “Total” column shows the number of observers who rated each individual unit. For any 

particular unit 𝑖, that number is denoted by 𝑟𝑖+. For the purpose of calculating the Krippendorff’s 

alpha coefficient all units rated by a single observer or not rated at all by any observer must be 

excluded from the analysis. Consequently, unit #12 of Table 2, will not be considered when 

calculating the 𝛼 coefficient (note that 𝑟12+ = 1). 
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TABLE 2 

Distribution of raters by unit and by category based on Table 1 data 

Unit 
Category  

1 2 3 4 5 Total 

1 3 0 0 0 0 3 

2 0 3 1 0 0 4 

3 0 0 4 0 0 4 

4 0 0 4 0 0 4 

5 0 4 0 0 0 4 

6 1 1 1 1 0 4 

7 0 0 0 4 0 4 

8 3 1 0 0 0 4 

9 0 4 0 0 0 4 

10 0 0 0 0 3 3 

11 2 0 0 0 0 2 

12 0 0 1 0 0 1 

Average 0.818 1.182 0.909 0.455 0.273 3.636 

Classification 

Probability (𝜋𝑘) 
0.225 0.325 0.25 0.125 0.075 1 

 

 

STEP 2: Calculating the Average Number of Observers per Unit, and the Classification 

Probabilities. 

 The average number of observers per unit denoted by 𝑟̅ (read 𝑟 bar), is obtained by averaging 

all numbers in the ``Total” column of Table 2 (except the number 1 associated with unit 

#12).  That is, 

𝑟̅ =
1

𝑛
∑𝑟𝑖 =

3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 3 + 2

11
= 𝟑. 𝟔𝟑𝟔.

𝑛

𝑖=1

 

That is, on average, about 3.636 observers rated each unit. 

 For a given category 𝑘, the probability 𝜋𝑘 that a randomly selected observer will classify any 

given unit into category 𝑘,  is calculated as the ratio of the average number of observers who 

classified a unit into category 𝑘 and rated 2 units or more, to the overall average number of 

raters per unit. That is, 
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𝜋𝑘 =
1

𝑛
∑

𝑟𝑖𝑘
𝑟̅
,

𝑛

𝑖=1

                                                               (2) 

where 𝑛 is the number of units rated by 2 observers or more. The last row of Table 2 shows all 5 

classification probabilities 𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝑎𝑛𝑑 𝜋5. 

 

STEP 3: Calculating the overall percent agreement 𝑝𝑎 

The overall percent agreement associated with Krippendorff’s 𝛼 coefficient is obtained as 

𝑝𝑎 = (1 − 1 𝑛𝑟̅⁄ )𝑝𝑎
′ + 1 𝑛𝑟̅ ,⁄  where 𝑝𝑎

′  is calculated by averaging all 𝑛 unit-level percent 

agreement values 𝑝𝑎|𝑖. These elements are defined as follows: 

𝑝𝑎
′ =

1

𝑛
∑𝑝𝑎|𝑖,

𝑛

𝑖=1

 𝑤ℎ𝑒𝑟𝑒  𝑝𝑎|𝑖 =∑
𝑟𝑖𝑘(𝑟̅𝑖𝑘+ − 1)

𝑟̅(𝑟𝑖 − 1)
,

𝑞

𝑘=1

 𝑎𝑛𝑑 𝑟̅𝑖𝑘+ =∑𝑤𝑘𝑙𝑟𝑖𝑙.

𝑞

𝑙=1

           (3) 

The quantity 𝑟̅𝑖𝑘+ represents the weighted count of observers who classified unit 𝑖 into any 

category that represents an agreement or a partial agreement with category 𝑘, as defined by the 

set of weights being used. This quantity can be calculated only after specifying the set of weights 

to be used. At this stage, we like to make the following 2 comments: 

(i) When there are no missing ratings, the quantity 𝑝𝑎
′  represents the percent agreement that 

is associated with most kappa-like agreement coefficients known in the literature, 

including Fleiss’ Kappa (Fleiss, 1971).  The Krippendorff’s alpha is based on a percent 

agreement 𝑝𝑎 that always exceeds 𝑝𝑎
′ , although the difference decreases proportionally to 

the number of units in the sample, and the number of observers participating in the study. 

  

(ii) Weighting the count of observers who classified unit 𝑖 into category 𝑘 and its affiliates 

(determined by the weights), amounts to counting all observers who classified unit 𝑖 into 

category 𝑘, and a fraction of those who classified unit 𝑖 into any other category with a 

non-zero weight with category 𝑘.   

Krippendorff (2007) has proposed several “metric differences,” each of which is associated with 

a specific set of weights as shown in section 3. 

STEP 4: Calculating the overall percent chance agreement 𝑝𝑒 

The percent chance agreement quantifies how often you would normally expect 2 randomly 

selected observers to agree if the scoring is performed randomly according to the observed 

classification probabilities. That is, 
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𝑝𝑒 =∑𝑤𝑘𝑙𝜋𝑘𝜋𝑙 .                                                                        (4)

𝑛

𝑘,𝑙

 

The above expression is similar to the percent chance agreement that Gwet (2010) proposed for 

the weighted version Fleiss’ generalized kappa, after adapting the methodology of Janson and 

Olsson (2001). 

STEP 5: Computing the Krippendorff’s alpha coefficient 

Compute the 𝛼 coefficient according to equation (1) using the percent agreement 𝑝𝑎 and the 

percent chance agreement 𝑝𝑒 given by equations (3) and (4). 

After computing the Alpha coefficient, you may also compute its standard error using the 

variance expression shown in section A of the appendix.  This expression is implemented in the 

AgreeStat 2015.4Excel program discussed in section 5.  

 

3. THE WEIGHTS BASED ON KRIPPENDORFF’S METRIC DIFFERENCES 

For any 2 categories 𝑘, and 𝑙 the associated weight 𝑤𝑘𝑙 is defined as 𝑤𝑘𝑙 = 1 − 𝛿𝑘𝑙 , where  𝛿𝑘𝑙 is 

the Krippendorff’s metric difference (possibly standardized to obtain a number between 0 and 1).  

Several weights are available, and only the type of data (i.e. ratings) being analyzed determines 

the appropriate weight to be used.  

 Identity Weights (I-weights) 

When dealing with nominal ratings, it is recommended to use the identity weights defined 

as follows: 

𝑤𝑘𝑙 = {
1, 𝑖𝑓 𝑘 = 𝑙,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Only the classification of units into the exact same category by 2 raters is considered as 

agreement, and there is no provision for partial agreement. The use of I-weights actually 

leads to the unweighted analysis. 

 

 Ordinal Weights (O-weights) 

For ordinal ratings, Krippendorff (2007) has described a weighting scheme that depends 

on the number of subjects, and the distribution of raters by subject and category.  Such 

weights do not have a straightforward interpretation since they are sample-dependent. 

They may also have an adverse impact on the variance of the alpha coefficient, in 

addition to making its standard error estimation more complex.  

 

I propose the following simpler weights in case of ordinal ratings: 
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𝑤𝑘𝑙 = {

1, 𝑖𝑓 𝑘 = 𝑙

1 −
#{(𝑖, 𝑗), min (𝑘, 𝑙) ≤ 𝑖 < 𝑗 ≤ max (𝑘, 𝑙)}

𝑤𝑚𝑎𝑥
, 𝑖𝑓 𝑘 ≠ 𝑙.

 

 

Note that, #{(𝑖, 𝑗), min (𝑘, 𝑙) ≤ 𝑖 < 𝑗 ≤ max (𝑘, 𝑙)} represents the number of pairs (𝑖, 𝑗) 

with 𝑖 < 𝑗, which can be formed with numbers between min (𝑘, 𝑙) and max(𝑘, 𝑙), and 

𝑤𝑚𝑎𝑥 its maximum value over all values of 𝑘, and 𝑙. One may note that 

#{(𝑖, 𝑗),min(𝑘, 𝑙) ≤ 𝑖 < 𝑗 ≤ max(𝑘, 𝑙)} represents the number of combinations of 

 max(𝑘, 𝑙) − min(𝑘, 𝑙) + 1 objects taken 2 at a time. 

 

 Quadratic Weights (Q-weights) 

When dealing with interval data, one would use the following quadratic weights that 

correspond to Krippendorff’s interval metric differences: 

𝑤𝑘𝑙 = {

1, 𝑖𝑓 𝑘 = 𝑙,

1 −
(𝑘 − 𝑙)2

max
𝑎,𝑏

(𝑏 − 𝑎)2
𝑖𝑓 𝑘 ≠ 𝑙. 

 Ratio Weights (R-weights) 

The ratio weights to be used with ratio data are defined as follows: 

𝑤𝑘𝑙 = 1 − [(𝑘 − 𝑙) (𝑘 + 𝑙)⁄ ]2 

 Circular Weights (C-weights) 

Let 𝑞𝑚𝑎𝑥 and 𝑞𝑚𝑖𝑛 be respectively the largest and smallest values of the scoring scale, 

and 𝑈 = 𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛 + 1. The circular weights are defined as follows: 

 

𝑤𝑘𝑙 =

{
 
 

 
 1 − (𝑠𝑖𝑛 [

180(𝑘 − 𝑙)

𝑈
])

2

, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑖𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛′𝑠 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠,

1 − (𝑠𝑖𝑛 [
𝜋(𝑘 − 𝑙)

𝑈
])

2

, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑖𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛′𝑠 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠.

 

 

 

 Bipolar Weights (B-weights) 

The Bipolar weights are defined for any 2 categories 𝑘, and 𝑙 as follows: 

𝑤𝑘𝑙 = 1 −
(𝑘 − 𝑙)2

(𝑘 + 𝑙 − 2𝑞𝑚𝑖𝑛)(2𝑞𝑚𝑎𝑥 − 𝑘 − 𝑙)
  .   

 

4. GWET’S 𝐴𝐶1 COEFFICIENT 
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The Krippendorff’s alpha coefficient has several advantages, which include the ability to handle 

missing data, and to be loaded with various sets of weights for different data types. However, 

this coefficient does not specifically address the classical paradox problem raised by Cicchetti 

and Feinstein (1990), as well as Feinstein and Cicchetti (1990). These authors have described the 

following two paradoxes with respect to the use of Kappa, which are in reality equally valid for 

all kappa-like agreement coefficients that use the same percent chance agreement of equation 

(4): 

 With a large value associated with the percent chance agreement 𝑝𝑒, the correction 

procedure will convert a high percent agreement into a relatively low kappa value. 

 In case of 2 raters, unbalanced marginal totals produce higher values of kappa than more 

balanced totals. 

These problems were extensively discussed by Gwet (2008a), and the 𝐴𝐶1 coefficient proposed 

as a paradox-robust alternative to kappa. The weighted version of  𝐴𝐶1 (also referred to as 𝐴𝐶2), 

which is used for ordinal, interval, and ratio data, were discussed by Gwet (2010) in the case 

where there is no missing rating. Weighted versions of other coefficients, including Fleiss’ 

generalized kappa (1971), Conger (1980), Brennan and Prediger (1981) based on the methods of 

Berry and Mielke (1988), Janson and Olsson (2001), and Janson and Olsson (2004), are also 

discussed by Gwet (2010). In this section, I will present a version of the weighted  𝐴𝐶1 that can 

handle missing values, while avoiding the paradoxical behavior of kappa, Fleiss’ generalized 

kappa and the likes. 

The general form of 𝐴𝐶2 is  𝛾2 = (𝑝𝑎 − 𝑝𝑒) (1 − 𝑝𝑒)⁄ , where 𝑝𝑎 is the weighted percent 

agreement, and 𝑝𝑒 the weighted percent chance agreement, which are both defined differently 

from Krippendorff’s. The percent agreement associated with 𝐴𝐶2 is obtained by averaging all
1
 

unit-level percent agreement values 𝑝𝑎|𝑖 , defined as,  

𝑝𝑎|𝑖 =∑
𝑟𝑖𝑘(𝑟̅𝑖𝑘+ − 1)

𝑟𝑖(𝑟𝑖 − 1)

𝑞

𝑘

.                                                       (5) 

The form taken by this unit-level percent agreement is justified. It represents the probability that 

2 observers, randomly selected among the 𝑟𝑖 observers who rated unit 𝑖, agree about its 

classification. For a given category 𝑘, the first observer would be selected with probability 

 𝑟𝑖𝑘 𝑟𝑖⁄ , while the second should be selected with probability (𝑟̅𝑖𝑘+ − 1) (𝑟𝑖 − 1)⁄ . Using  𝑟̅𝑖𝑘+ (see 

equation (3)) as opposed to 𝑟𝑖𝑘 is necessary to account for the partial agreement situations due to 

all these categories with a non-zero weight with category 𝑘 (i.e. all category 𝑘 affiliates).   

The percent chance-agreement associated with 𝐴𝐶2 is calculated as follows: 

                                                           
1
 You would actually average over all units that were rated by 2 observers or more, which is also what is done with 

Krippendorff’s alpha. 
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𝑝𝑒 =
𝑇𝑤

𝑞(𝑞 − 1)
∑𝜋𝑘(1 − 𝜋𝑘)

𝑞

𝑘=1

, 𝑤ℎ𝑒𝑟𝑒 𝑇𝑤 =∑∑𝑤𝑘𝑙,

𝑞

𝑙=1

 𝑎𝑛𝑑 𝜋𝑘 =
1

𝑛
∑

𝑟𝑖𝑘
𝑟𝑖
.

𝑛

𝑖=1

𝑞

𝑘=1

                   (6) 

𝜋𝑘  represents the probability of classification into category 𝑘. The percent chance agreement 

associated with 𝐴𝐶2 is defined in such a way that it increases as the classification probabilities 

get closer to 1 𝑞⁄  (a situation expected with random scoring). As the classification probabilities 

stray away from these uniform values, the weighted percent chance agreement decreases. Gwet 

(2008a) argues that the percent chance agreement should not use the observations as if they were 

all generated under the hypothesis of independence or by pure chance as done with kappa and 

other coefficients. At best, only a small portion of the data might have been generated by a 

mechanism susceptible to produce agreement by chance. The distribution of raters by category  

must suggest the extent to which chance agreement can be expected.   

Note that the Krippendorff’s 𝛼 coefficient is solely based on units that are rated by 2 observers or 

more. However, Gwet’s  𝐴𝐶1 and 𝐴𝐶2 coefficients consider units rated by 2 observers or more 

only for the purpose of calculating the percent agreement 𝑝𝑎; the percent chance agreement 𝑝𝑒 is 

based on all units rated by one observer or more. Expressions for computing the standard error of 

the 𝐴𝐶2 coefficients are given in the appendix.  

 

5. THE AGREESTAT PROGRAM 

 

AgreeStat is an Excel VBA (Visual Basic for Applications) program that allow researchers to 

perform statistical analysis on the extent of agreement among multiple raters. It implements the 

Krippendorff’s alpha with all of its weights, Gwet’s 𝐴𝐶1 and  𝐴𝐶2 coefficients, Fleiss Kappa, and 

more, and can be downloaded at the following URL http://agreestat.com/agreestat.html. A 

unique feature of AgreeStat is the possibility for a researcher to specify custom weights to best 

reflect the special nature of certain disagreement situations.  

The dataset shown in Table 1 was analyzed with AgreeStat and the results are shown in Table 3. 

The coefficient names appear in the first column, while the second column contains the 

coefficient estimates. Columns 3 and 4 contain the standard errors and 95% confidence intervals 

associated with the coefficients, and calculated with respect to the sampling of subjects only. 

That is, the observer sample is considered fixed and not subject to any sampling variability. This 

statistical inference is performed conditionally upon the observer sample, and allows a researcher 

to infer to the subject population only. For inference to both populations of subjects and 

observers simultaneously, one needs to use the standard errors and confidence intervals shown in 

columns 5 and 6. 

http://agreestat.com/agreestat.html
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Researchers dealing with inter-coder reliability have a tendency to consider inference with 

respect to the population of subjects only. This may well be all what is needed.  After all, if you 

want to know the extent to which 2 coders agree, and you are interested exclusively in the coding 

of these 2 particular individuals, then the population of subjects is the only population of 

inference you should be concerned about. However, if the coders who participate in the 

reliability experiment are seen as a representative sample of a bigger population of possible 

coders, then you must consider not one, but 2 populations of inference, which are the population 

of subjects, and the population of coders. In this case, your statistical procedure must evaluate 

the precision of the agreement coefficients with respect to the 2 sources of variability due to the 

sampling of subjects and the sampling of coders. Statistical inference will no longer be 

conditional upon a fixed observer sample.  Instead, it will be unconditional, with no fixed 

sample. Gwet (2008b) discusses this notion of unconditional standard error as it applies to inter-

rater reliability coefficients.        

AgreeStat evaluates the standard error with respect to both the sampling of subjects, and that of 

coders, by summing the subject variance and the coder variance, and taking the square root of the 

total variance. The subject variance is calculated using the expressions given in the appendix of 

this paper, while the coder variance component is calculated using the jackknife method as 

discussed in Gwet (2010).    

TABLE 3 

A Partial Output of AgreeStat Based on Table 1 Data 

Method Coefficient 
Inference/Subjects 

Inference/Subjects & 

Raters 

Std. Err 95% C.I. Std. Err 95% C.I. 

Conger's Kappa 0.7628 0.1492 0.435 to 1 0.1898 0.345 to 1 

Gwet's AC1 0.7754 0.1429 0.461 to 1 0.1814 0.376 to 1 

Fleiss' Kappa 0.7612 0.1530 0.424 to 1 0.1945 0.333 to 1 

Krippendorff's Alpha 0.7434 0.1455 0.423 to 1 0.1950 0.314 to 1 

Brenann-Prediger 0.7727 0.1447 0.454 to 1 0.1838 0.368 to 1 

Percent Agreement 0.8182 0.1256 0.542 to 1 0.1549 0.477 to 1 

   

An agreement coefficient may have a good precision level with respect to the subject sample 

only, and a low precision level with respect to the sampling of both subjects and coders.  This 

would be an indication that the number of coders recruited for the experiment was too small to 

produce an extent of agreement that can be projected to the entire universe of coders. The 

researcher will then have to either increase the number of coders in the experiment, or restrict 

statistical inference to the subject population, and the specific sample of coders at hand. 
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I now consider the dataset discussed by Hayes and Krippendorff (2007).  This dataset contains 

the ratings that 5 observers assigned to 40 newspaper articles with respect to their coverage of a 

challenger running for political office against an incumbent. The observers had to rate the article 

with respect to what its tone suggested, and classify it in one of the following 4 categories: 

 0: The challenger is a sure loser 

 1: The challenger is somewhat competitive 

 2: The challenger is competitive 

 3: The challenger is a likely winner 

None of the 5 observers rated all 40 articles, and some of them generated as many as 18 missing 

values.  AgreeStat 2015.4 handles these missing values with no problem. Table 4 contains a 

partial output of AgreeStat 2015.4, where the ratings are treated as nominal data. That is, the 

Identity weights are used to assign a weight of 1 to the perfect agreement situations, and a weight 

of 0 to all situations of disagreements. It appears that all agreement coefficients yield low inter-

rater reliability values, all being around 0.50.   

TABLE 4 

A Partial Output of AgreeStat 2015.4for the  

Hayes-Krippendorff 2007 Dataset – Nominal Data 

Method Coefficient 

Inference/Subjects 

Inference/Subjects & 

Raters 

Std. Err 95% C.I. Std. Err 95% C.I. 

Conger's Kappa 0.4726 0.0844 0.302 to 0.643 0.1252 0.219 to 0.726 

Gwet's 𝐴𝐶1 0.5093 0.0654 0.377 to 0.642 0.1072 0.292 to 0.726 

Fleiss' Kappa 0.4697 0.0696 0.329 to 0.61 0.1165 0.234 to 0.705 

Krippendorff's Alpha 0.4765 0.0676 0.34 to 0.613 0.1191 0.236 to 0.717 

Brenann-Prediger 0.5000 0.0661 0.366 to 0.634 0.1092 0.279 to 0.721 

Percent Agreement 0.6250 0.0496 0.525 to 0.725 0.0819 0.459 to 0.791 

 

Table 5 contains a partial output of AgreeStat 2015.4, where the ratings are treated as interval 

data. That is the Quadratic Weights, which correspond to Krippendorff’s interval metric 

differences are used with all agreement coefficients. The coefficients resulting from the use of Q-

weights are substantially higher than those based on I-weights. The chance-corrected measures 

range from 0.7499 for Fleiss’ kappa to 0.8476 for Gwet’s 𝐴𝐶1.  

TABLE 5 

A Partial Output of AgreeStat 2015.4for the  

Hayes-Krippendorff 2007 Dataset – Interval Data 

Method Coefficient Inference/Subjects Inference/Subjects & 
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Raters 

Std. Err 95% C.I. Std. Err 95% C.I. 

Conger's Kappa 0.7536 0.0521 0.648 to 0.859 0.0610 0.63 to 0.877 

Gwet's AC1 0.8476 0.0279 0.791 to 0.904 0.0347 0.777 to 0.918 

Fleiss' Kappa 0.7499 0.0518 0.645 to 0.855 0.0616 0.625 to 0.874 

Krippendorff's Alpha 0.7574 0.0424 0.672 to 0.843 0.0643 0.627 to 0.887 

Brenann-Prediger 0.8250 0.0296 0.765 to 0.885 0.0374 0.749 to 0.901 

Percent Agreement 0.9514 0.0082 0.935 to 0.968 0.0104 0.93 to 0.972 

 

 

6. CONCLUDING REMARKS 

 

In this paper, we have proposed a simple approach that we expect will make the computation of 

Krippendorff’s alpha coefficient no more intimidating than the computation of any other 

agreement coefficient in the literature.  We have also presented the alpha in a form that makes it 

more comparable to other known coefficients, in addition to proposing a close expression for 

calculating its variance. We derived this variance expression based on a linearized version of the 

alpha coefficient, which is valid for a reasonably large number of subjects. 

We have also introduced the 𝐴𝐶1 (for nominal data) and 𝐴𝐶2 coefficients, which can also handle 

missing values, in addition to addressing the paradox problem associated with Cohen’s kappa. 

𝐴𝐶2 could use all weights based on the Krippendorff’s metric differences to accommodate 

various data types.  

We have briefly described the AgreeStat 2015.4program that can be used to compute various 

agreement coefficients, along with their standard errors and confidence intervals. It may also be 

used to conduct statistical inference conditionally upon the rater sample, or unconditionally.  

Unconditional inference has the advantage to project the analysis results to both universes of 

subjects and raters.        
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APENDIX 

 

A. THE STANDARD ERROR OF KRIPPENDORFF’S ALPHA 

The standard error of Krippendorff’s alpha coefficient is calculated as the square root of its 

variance, whose general form is given by equation
2
 (7). 

𝑣(𝛼) =
1 − 𝑓

𝑛

1

𝑛 − 1
∑(𝛼𝑖

∗ − 𝛼)2,

𝑛

𝑖=1

                                                                (7) 

where 𝛼𝑖
∗ (the subject-level alpha value) is defined as follows:  

{
𝛼𝑖
∗ = 𝛼𝑖 − 2(1 − 𝛼) (𝑝𝑒|𝑖 − 𝑝𝑒) (1 − 𝑝𝑒),⁄

𝛼𝑖 = (𝑝𝑎|𝑖 − 𝑝𝑒) (1 − 𝑝𝑒)⁄ ,
 

and the subject-level percent agreement 𝑝𝑎|𝑖 and percent chance agreement 𝑝𝑒|𝑖 are respectively 

given by, 

𝑝𝑎|𝑖 =∑
𝑟𝑖𝑘(𝑟̅𝑖𝑘+ − 1)

𝑟̅(𝑟𝑖 − 1)

𝑞

𝑘

− 𝑝𝑎(𝑟𝑖 − 𝑟̅) 𝑟̅⁄ ,

𝑝𝑒|𝑖 =∑𝜋̅𝑘 𝑟𝑖𝑘 𝑟̅⁄

𝑞

𝑘=1

− 𝑝𝑒 (𝑟𝑖 − 𝑟̅) 𝑟̅,⁄  𝑤ℎ𝑒𝑟𝑒 𝜋̅𝑘 = (𝜋̅𝑘+ + 𝜋̅+𝑘) 2⁄ ,

 

 

and 𝜋̅𝑘+ and  𝜋̅+𝑙 are weighted classification probabilities in categories 𝑘 and 𝑙 respectively, and 

defined as follows: 

𝜋̅𝑘+ =∑𝑤𝑘𝑙𝜋𝑙 ,   𝑎𝑛𝑑  𝜋̅+𝑙 =∑𝑤𝑘𝑙𝜋𝑘

𝑞

𝑘=1

𝑞

𝑙=1

  

Note that all known weight matrices are symmetrical, and for such weights 𝜋̅𝑘+ = 𝜋̅+𝑘. 

However, AgreeStat 2015.4allows for the use of custom weights with no constraint of symmetry. 

Although asymmetrical weights would be difficult to interpret, they may technically be used, and 

would lead to different weighted classification probabilities 𝜋̅𝑘+ and 𝜋̅+𝑘. Also note that just like 

Krippendorff’s coefficient itself, its variance is calculated based solely on subjects that are rated 

by 2 raters or more.  All subjects rated by a single rater must be excluded from the variance 

calculation altogether. 

                                                           
2
 Calculating this variance of the alpha coefficient requires all subjects rated by a single rater to be excluded first.  

Only subjects rated by 2 raters or more must be used. 
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B. THE STANDARD ERROR OF GWET’S 𝐴𝐶2 COEFFICIENT 

The standard error of the 𝐴𝐶2 coefficient is the square root of its variance given by equation (8). 

𝑣(𝛾2) =
1 − 𝑓

𝑛

1

𝑛 − 1
∑(𝛾2|𝑖

∗ − 𝛾2)
2
,

𝑛

𝑖=1

                                          (8) 

where 𝛾2 is the 𝐴𝐶2 coefficient, and 𝛾2|𝑖
∗  the unit-level coefficient, which will now be defined. 

Let 𝛾2|𝑖 be the 𝐴𝐶2 coefficient based on unit 𝑖 only and the overall percent chance agreement 𝑝𝑒. 

The quantity 𝛾2|𝑖 is defined as follows: 

𝛾2|𝑖 = {
(𝑛 𝑛′) (𝑝𝑎|𝑖 − 𝑝𝑒) (1 − 𝑝𝑒),⁄⁄ 𝑖𝑓 𝑟𝑖 ≥ 2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

where 𝑛 is the total number of units being rated, and 𝑛′the number of units rated by 2 observers 

or more, and 𝑝𝑎|𝑖  is defined as follows: 

𝑝𝑎|𝑖 =∑
𝑟𝑖𝑘(𝑟̅𝑖𝑘+ − 1)

𝑟𝑖(𝑟𝑖 − 1)

𝑞

𝑘

. 

Let 𝛾2|𝑖
∗  be the bias-adjusted 𝐴𝐶2 coefficient based on unit 𝑖, and defined as follows: 

𝛾2|𝑖
∗ = 𝛾2|𝑖 − 2(1 − 𝛾2)

𝑝𝑒|𝑖 − 𝑝𝑒

1 − 𝑝𝑒
,   

where the unit-level percent chance agreement 𝑝𝑒|𝑖  is defined as, 

𝑝𝑒|𝑖 =
𝑇𝑤

𝑞(𝑞 − 1)
∑𝜋𝑘 (1 −

𝑟𝑖𝑘
𝑟𝑖
)

𝑞

𝑘=1

, 𝑤ℎ𝑒𝑟𝑒  𝑇𝑤 =∑∑𝑤𝑘𝑙

𝑞

𝑙=1

𝑞

𝑘=1

.  


