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The notion of intrarater reliability will be
of interest to researchers concerned about
the reproducibility of clinical measurements.
A rater in this context refers to any data-
generating system, which includes individ-
uals and laboratories; intrarater reliability
is a metric for rater’s self-consistency in
the scoring of subjects. The importance of
data reproducibility stems from the need for
scientific inquiries to be based on solid evi-
dence. Reproducible clinical measurements
are recognized as representing a well-defined
characteristic of interest. Reproducibility is
a source of concern caused by the extensive
manipulation of medical equipment in test
laboratories and the complexity of the judg-
mental processes involved in clinical data
gathering. Grundy (1) stresses the impor-
tance of choosing a good laboratory when
measuring cholesterol levels to ensure their
validity and reliability. This article discusses
some basic methodological aspects related to
intrarater reliability estimation. For contin-
uous data, the intraclass correlation (ICC) is
the measure of choice and will be discussed
in the section entitled “Intrarater reliability
for continuous scores.” For nominal data, the
kappa coefficient of Cohen (2) and its many
variants are the preferred statistics, and they
are discussed in the section entitled “nominal
scale score data.” The last section is devoted
to some extensions of kappa-like statistics
aimed at intrarater reliability coefficients for
ordinal and interval data.

1 INTRARATER RELIABILITY FOR
CONTINUOQOUS SCORES

A continuous clinical measurement, such as
blood pressure, will be considered repro-
ducible if repeated measures taken by the
same rater under the same conditions show
a rater variation that is negligible compared
with the subject variation. ICC is the ratio

of the between-subject variation (BSV) to the
total variation [i.e., the sum of the BSV and
the within-subject variation (WSV)], and it
is the statistical measure most researchers
adopted for quantifying the intrarater reli-
ability of continuous data. Note that ICC
reaches its maximum value of 1 when WSV
(i.e., the average variation for a subject)
reaches its lower bound of 0, a situation
indicating that any variation in the data is
because the subjects are different and not
because the rater is being inconsistent. Used
previously as a measure of reliability by Ebel
(3) and Barko (4), the ICC has proved to be a
valid measure of raters’ self-consistency.

Shrout and Fleiss (5) discuss various forms
of the ICC as a measure of inter-rater reliabil-
ity, which quantifies the extent of agreement
between raters as opposed to intrarater reli-
ability used to measure self-consistency. The
selection of a particular version of the Shrout-
Fleiss ICCs is dictated by the design adopted
for the intrarater reliability study. Lachin (6)
also discusses various techniques for evalu-
ating the quality of clinical trial data, which
includes the ICC among others.

1.1 Defining Intrarater Reliability

Ratings in a typical intrarater reliability
study that involves m subjects and n repli-
cates per subject are conveniently organized
as shown in Table 1. The entry y;; represents
the ith replicate score that the rater assigned
to subject j. This table may be transposed if
the number of subjects is very large. The rela-
tionship between the ICC and the analysis of
variance (ANOVA) techniques motivated the
proposed disposition of rows and columns of
Table 1.

The WSV is the average of the m subject-
level variances 51'2 calculated over the n repli-
cates. More formally, the WSV is defined as
follows:
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Table 1. Scores Assigned to m Subjects with n Replicates per Subject

Subject
Observation 1 2 j m
1 yi1 Y12 Yij . Yim
2 Y21 Y22 Y2j s Y2m
i Vil Vi Yij e Yim
n Yn1 Yn2 Ynj e Ynm

and y; is the average of the n replicate
observations related to subject j. The BSV
is obtained by taking the variance of the m
subject-level mean scores trimmed of the
fraction of the WSV it contains. It is formally
defined as follows:

WSV
BSV = BSV, — %,
m — —
Y ¥i-Y.)?
=1
h BSVg=——— 2
where o —] 2

and y.. is the overall mean of all mn observa-
tions.

Using Equations (1) and (2), we define
the intrarater reliability coefficient y (read
gamma hat with the hat indicating an esti-
mation of the “true” parameter y to be defined
later) as follows:

BSV

BSV + WSV 3

P =
To illustrate the calculation of the ICC, let us
consider the cholesterol level data of Table 2.
Table 2 data represent cholesterol levels
taken from 10 individuals who participated
in the 2005 National Health and Nutrition

Examination Survey (7). For the sake of illus-
tration, | assume that the data was collected
on two occasions (times 1 and 2) by the same
laboratory.

Although Equations (1)—(3) can be used to
obtain the ICC from Table 2 data, the more
convenient approach for computing the ICC
will generally be to use an ANOVA proce-
dure either from Microsoft Excel (Microsoft
Corporation, Redmond, WA), or from a stan-
dard statistical package such as SPSS (SPSS
Inc., Chicago, IL) or SAS (SAS Institute Inc.,
Cary, NC). The ANOVA analysis will produce
two mean squares (MS) known as the Mean
Square for Treatments (MSt), which is also
referred to as the Mean Square for the model,
and the Mean Square for Error (MSg). The
ICC can be expressed as a function of the two
mean squares as follows:

. MSy—MSe @
Y= NSt + (n— )MSe

Using MS Excel’'s Analysis ToolPak and the
cholesterol data, | created the output shown
in Table 3 known as the ANOVA table, in
which the column labeled “MS” contains the
two Mean Squares (MSt = 1323.56, and MSg
= 18.25) needed to compute the ICC. There-
fore, the intrarater reliability associated with

Table 2. Total Cholesterol Measures (in mg/dL) taken on 10 subjects with 2 Replicates per

Subject

Subjects
Time 1 2 3 4 6 7 8 9 10
1 152 202 160 186 207 205 160 188 147 151
2 155 210 156 200 214 209 163 189 146 153

Source: Reference 7.
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Table 3. ANOVA Table Created with MS Excel from Table 2 Cholesterol Data

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 11,912.05 9 1323.56 72.52 6.4E-08 3.02
Within Groups 182.5 10 18.25

Total 12,094.55 19

Table 2 data is computed as follows:

1,323.56 — 18.25
- ! —0.973
¥ = 1,32356 + (2 1) x 18.25

Consequently, the subject factor accounts
for 97.3% of the total variation observed in
the cholesterol data of Table 2, which is an
indication of high intrarater reliability. This
estimation gives us a sense of the repro-
ducibility of cholesterol levels. However, it
also raises questions about its accuracy and
the steps that could be taken to improve it.
These issues can only be addressed within a
well-defined framework for statistical infer-
ence.

1.2 Statistical Inference

The primary objective of this section is to
present a framework for statistical infer-
ence that will help answer the following
fundamental questions about the intrarater
reliability estimate:

e Is the obtained ICC sufficiently accu-
rate?

e Can the obtained ICC be considered
valid?

e Have we used a sufficiently large num-
ber of replicates?

e Have we used a sufficiently large num-
ber of subjects?

e Can the data be collected by multiple
raters?

These questions can be addressed only if this
theoretical framework provides the following
two key components:

1. The definition of a population param-
eter y (i.e.,, gamma without the hat)
that represents the “true” unknown
intrarater reliability being measured

2. Methods for evaluating the precision of
proposed statistics 7 with respect to the
parameter of interest y

Let us consider the simple scenario in which
yij results from the additive effect of a com-
mon score u, the subject effect t;, and an
error gj; committed on the ith replicate score
of subject j. This relation is mathematically
expressed as follows:

Vij=p+t+ej,i=1nandj=1,---m (5)

This example is a single-factor ANOVA model
that goes along with the following assump-
tions:

e The m subjects that participate in the
intrarater reliability study form a ran-
dom sample selected from a larger pop-
ulation of subjects of interest. Moreover,
tj is a normally distributed random vari-
able with mean 0 and variance ¢ > 0.

e The error gj; is a normally distributed
random variable with mean 0, and vari-
ance ng >0, and it is independent of
t.

A small value for ¢2 will lead to a small
variation between replicate scores, which in
turn should lead to a high intrarater relia-
bility. Therefore, the theoretical parameter
that represents the intrarater reliability y is
defined as follows:

2
Ot

of +0?

y = (6)

which is one of the parameters studied
by McGraw and Wong (8). It follows from
Equation (5) that the denominator of y is the
total variation in the scores, and Equation (6)
is the most popular form of ICC found in the
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statistical literature and represents the por-
tion of total variance that is accounted for by
the between-subject variance. The statistic
y of Equation (3) is a sample-based approxi-
mation of y widely accepted in the statistical
literature.

We will now present a method for evaluat-
ing the precision of the statistic . How close
is y to y? To answer this question we will
construct a 95% confidence interval around
y; that is a range of values expected to contain
the unknown y with 95% certainty.

Constructing a 95% confidence interval
for y requires the calculation of the 2.5th
and 97.5th percentiles of the F distribu-
tion with m—1 and m(n—1) degrees of free-
dom. These two percentiles are denoted by
Fo.975,m—1,m(n—1) and Fo 025 m—1,mn-1), respec-
tively, where 0.975 = 1-(1-0.95)/2 and
0.025 = (1-0.95)/2. Although textbooks’ sta-
tistical tables provide these percentiles, they
are also readily obtained from MS Excel

as follows: “ =FINV(0.025,m—1,m*(n—1))"
gives the 97.5th percentile, whereas
“FINV(0.975,m—1,m*(n—1))" for the 2.5th
percentile.

Let F be defined as follows:

_ BSV, MSy
T WSV/n~ MSE

@)

(o]

The 95% confidence interval for y is obtained
by noting that:

P(Les <y < Ugs) =0.95

Fo/Fo.025,m-1,mn-1) — 1
(m — 1)+ F/Fo.025m-1,mn-1)
Fo/Fo.9o7s,m-1mn-1) — 1
(m — 1)+ F/Fog75,m-1mn-1)

and

Los =

Ugs =

8)

The 95% confidence interval width is given
by:
Wos = Ugs — Lgs 9)

The design of an intrarater reliability study
must aim at minimizing the magnitude of
the confidence interval width. The optimal
values for the number m of subjects and the
number n of replicates per subject are those
that minimize Wgs of Equation (9).

1.3 Optimizing the Design of the Intrarater
Reliability Study

An intrarater reliability study is well
designed if the number of observations is
determined to minimize the confidence inter-
val length and the experimental error is kept
small. This section addresses the following
two questions:

1. What is the optimal number m of sub-
jects, and number n of replicates per
subject?

2. Can the intrarater reliability study
involve two raters or more?

1.3.1 Sample Size Determination. Finding
the optimal number of subjects and replicates
per subject based the confidence interval
length is the approach Giraudeau and Mary
(9) used to propose guidelines for planning a
reproducibility study.

Let wgs be the expected width of the 95%
confidence interval associated with y. Note
that 62F,/(c2 + mo?) = Fo/(L+my /(1 —y))
where F, is defined by Equation (7) and fol-
lows the F distribution with m—1 and m(n—1)
degrees of freedom. Because Wgs defined by
Equation (9) is a function of F,, its expected
value wgs is a function of y. The relationship
between wgs and y is depicted in Figs. 1, 2,
and 3 for various values of m and n. The wgs
values are calculated using a Monte-Carlo
simulation approach because of the difficulty
to derive a mathematical expression of the
probability distribution of Wys.

For values of y that vary from O to 1 by
step of 0.05, and for various combinations of
(m,n) we simulated 10,000 observations from
the F distribution with m—1 and m(n-1)
degrees of freedom, and calculated 10,000
confidence intervals using Equation (8). The
mean length of the 10,000 intervals was used
as an estimate for wos.

Each of the three figures contains two
plots, and each plot shows how different val-
ues of m and n affect the relationship between
y and wgs for a fixed total number of observa-
tions mn. For the two plots of Fig. 1, the total
sample sizes mn are 20 and 40. For Fig. 2,
the total sample sizes are 60 and 80, whereas
Fig. 3's plots are based on the sample sizes of
100 and 120. All three figures tend to indicate



Figure 1. Expected width of the 95%
confidence interval as a function of y
for m and n values that correspond to
mn = 20 and mn = 40.

Figure 2. Expected width of the 95%
confidence interval as a function of y
for m and n values that correspond to
mn = 60 and mn = 80.

Expected Interval Width

Expected Interval Width

Expected Interval Width

Expected Interval Width

INTRARATER RELIABILITY 5

—_

0
0 .25 .50 .75 1.
Intra Rater Reliability
0
0 25 .50 75 1.0

Intra Rater Reliability

Intra Rater Reliability



6 INTRARATER RELIABILITY

0.6

Expected Interval Width

Figure 3. Expected width of the 95%
confidence interval as a function of y for
m and n values that correspond to mn =
100 and mn = 120.

Expected Interval Width

that for high intrarater reliability coefficients
(i.e., greater than 0.5), and a fixed total num-
ber of observations mn, using 2, 3, or at most
4 replicates per subjects is sufficient to obtain
the most efficient intrarater reliability coef-
ficient. Having more than four replicates is
likely to lead to a loss of precision. For smaller
y values, the recommendation is to use four
or five replicates per subject. One would also
note that if the “true” value of the intrarater
reliability is smaller than 0.80, then its esti-
mation will generally not be very precise.

1.3.2 Blocking the Rater Factor. If two
raters or more are used in a completely ran-
domized intrarater reliability experiment,
the resulting coefficient will be inaccurate.
In a completely randomized design, sub-
jects and replicates are assigned randomly
to different raters. Consequently, the rater
effect will increase the experimental error,
which thereby decreases the magnitude of
the intrarater reliability coefficient.

This problem can be resolved by designing
the experiment so that the rater effect can be
measured and separated from the experimen-
tal error. A design that permits this method
requires each rater to rate all subjects and
provide the same number of replicates per

.25 .50 .75 1.0
Intra Rater Reliability

Intra Rater Reliability

subject. Under this design referred to as
Randomized Block Design (RBD), the data is
gathered by block (i.e., by rater in this case)
with random rating within the block, and
it would be organized as shown in Table 4,
where y is the number of raters.

In Table 4, yjjx represents the kt replicate
observation on subject i provided by rater j.

The intrarater reliability coefficient y
under an RBD design is still defined by
Equation (3) with the exception that the
within-subject variation (WSV) and the
between-subject variation (BSV) are defined
as follows:

1 m r )
WSV = W;;sij, and
I=1 =

WSV
nr

BSV = BSVY, —

1 n
2 o \2
where Sf = —— kz_:l()’ijk —¥i;)” and
1 m
_ = \2.
BSVo = —— i;:(yi.. -y.)% (10)

¥ij is the average of all n scores rater j
assigned to subject i, y;. is the average of
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Table 4. Intrarater Reliability Data on m Subjects with r Raters and n Replicates per Subject

and per Rater

Subjects Rater 1 Rater j Rater r

1 Y111, --- Yiin Yij1, -+ Yijn .. Yirts---Yirn
2 Y211, - .- Y21n Yoits - - - Y2jn e Yorl, - .- Y2rn
i Yills - - - Yiln Yijts - - - Yiin Yirls - - - Yirn

m Ymit, - - - Ymin Ymils - - - Ymijn Ymrls - - - Ymrn

nr scores assigned to subject i, and y._. the
overall mean scores. Note that the WSV is
obtained by averaging the mr sample vari-
ances calculated at the cell level. Equation
(10) offers the advantage of removing any
influence of inter-rater variation when calcu-
lating the intrarater reliability.

The number of replicates in an RBD
design may vary by rater and by subject.
We assumed it to be fixed in this section for
the sake of simplicity. Although a single rater
is sufficient to carry out an intrarater relia-
bility experiment, the use of multiple raters
may be recommended for burden reduction
or for convenience.

The techniques and the inferential frame-
work discussed in this section work well for
continuous data, such as the cholesterol level,
but they are not suitable for nominal data. In
the next section, | present some techniques
specifically developed for nominal data.

2 NOMINAL SCALE SCORE DATA

Although the ICC is effective for quantify-
ing the reproducibility of continuous data,
nominal data raise new statistical problems
that warrant the use of alternative methods.
Rating subjects on a nominal scale amounts
to classifying them into one of q possible
response categories. The discrete nature of
that data has the following two implications:

1. The notion of reproducibility is exact. A
response category is reproduced when
the initial and the replicate categories
are identical, and unlike continuous
data, nominal data are not subject to
random measurement errors.

2. A rater may classify a subject on two
occasions into the exact same category
by pure chance with a probability that
is non-negligible.

Table 5 shows the distribution of 100
individuals with identified pulmonary abnor-
malities examined by a medical student on
two occasions. On both occasions, the medical
student found the same 74 individuals with
pulmonary abnormalities and the same 15
individuals without any abnormalities. How-
ever, the student disagreed with himself on
11 individuals. These data, which are a mod-
ification of the results reported by Mulrow
et al. (10), shows how analysts may organize
intrarater reliability data, and it is used later
in this section for illustration purposes.

For intrarater reliability experiments
based on two replicates per subject, analysts
may organize the observations as shown in
Table 6, where m is the number of subjects
rated, and my, the number of subjects clas-
sified in category k on the first occasion and
in category | on the second occasion. If the
experiment uses three replicates per subject
or more, then a more convenient way to orga-
nize the data is shown in Table 7 where n
is the number of replicates per subject, and
nix the number of times subject i is classified
into category k.

2.1 Intrarater Reliability: Single Rater and
Two Replications

When ratings come from a simple experiment
based on a single rater, two replicates per
subject, and two categories such as described
in Table 5, the kappa coefficient of Cohen
(2) or an alternative kappa-like statistic may
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Table 5. Distribution of 100 Subjects with Respect to the Presence of Pulmonary
Abnormalities Observed on two Occasions by a Medical Student

First Second Observation

Observation Present Absent Total
Present 74 1 75
Absent 10 15 25
Total 84 16 100

be used to estimate the intrarater reliability
coefficient. The medical student who gener-
ated Table 5 data could have obtained some of
the 89 matches by pure chance because of the
small number of response categories limited
to two. Consequently, 89% will overestimate
student’s self-consistency. Cohen’s (2) solu-
tion to this problem was a chance-corrected
agreement measure 7., which is known in
the literature as kappa, and it is defined as
follows:

- Pa — Pe
= AT 11
=T 11)

where for Table 5 data p, = (74 + 15)/100
= 0.89 is the overall agreement probability,
and pe = 0.75 x 0.84 4+ 0.21 x 0.16 = 0.6636
is the chance-agreement probability. Conse-
quently, the kappa coefficient that measures
the medical student intrarater reliability is
7 = 0.673. According to the Landis and Koch
(11) benchmark, a kappa value of this mag-
nitude is deemed substantial.

In a more general setting with m subjects,
two replicates per subject, and an arbitrary
number q of response categories (see Table 6),
the kappa coefficient of Cohen (2) is still
defined by Equation (11), except the overall

agreement probability p; and the chance-
agreement probability pe that are respec-
tively defined as follows:

q q
Pa=) Pk andpe =Y pirpik  (12)
k=1 k=1

where pk = Mi/m, Pk = my/m, and Py, =
my./m The overall agreement probability is
the proportion of subjects classified into the
exact same category on both occasions (i.e.,
the diagonal of Table 6).

The kappa coefficient will at times yield
unduly low values when the ratings suggest
high reproducibility. Cicchetti and Feinstein
(12), as well as Feinstein and Cicchetti (13)
have studied these unexpected results known
in the literature as the kappa paradoxes.
Several alternative more paradox-resistant
coefficients are discussed by Brennan and
Prediger (14). A Brennan-Prediger alterna-
tive denoted by yg,, which is often referred to
as the G-Index (Gl) and should be considered
by practitioners, is defined as follows:

pa—1/q
1-1/q°

Applied to Table 5 data, the Brennan-
Prediger coefficient becomes 75 = (0.89 —

Yo = (13)

Table 6. Distribution of m Subjects by Response Category and Replication Number.

First-Replication

Second-Replication Response Category

Category 1 k q Total
1 M1 M1k e Myq my
k My Mk e Miq My
q Mgt Mgk . Mqq Mg+
Total myg m_ m.yx m




0.5)/(1 — 0.5) = 0.78, which is slightly higher
than the kappa. Aickin (15) presents an inter-
esting discussion about kappa-like Intrarater
reliability coefficients and suggests the use of
his « coefficient. The « coefficient is based on
a sound theory and uses the maximum like-
lihood estimation of some of its components
obtained with a computationally intensive
iterative algorithm. Gwet (16) proposed the
AC; statistic as a simple way to resolve
the kappa paradoxes. The AC; coefficient is
defined as follows:

= 14
1 (14)
where p, is defined by Equation (12), and the
chance-agreement probability is as follows:

1 q
= ——% "pi(d — pw), where
a-1i=

Pk = (Pk+ + P+k)/2 (15)
For Table 5 data, p1 = (0.75 + 0.84)/12 =
0/795, p2 = (0.25 + 0.16)/2 = 0.205, and
p2 = 1—p1. Consequently, Gwet's chance-
agreement probability is P = 2 x 0.795 x
0.205 = 0.32595. The AC; statistic is then
given by pac, = (0.89 — 0.32595)/(1 — 0.32595)
= 0.84, which is more in line with the observed
extent of reproducibility. Gwet (16) exten-
sively discusses the statistical properties of
the AC; statistic as well as the origins of the
kappa paradoxes.

2.2 Intrarater Reliability: Single Rater and
Multiple Replications

Using more than two replicates per subject
can improve the precision of an intrarater
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reliability coefficient. The techniques dis-
cussed in this section generalize those of the
previous section, and they are suitable for
analyzing Table 7 data that involve three
replicates or more per subject.

All kappa-like statistics presented in the
previous section can still be used with Table 7
data. However, the overall agreement proba-
bility p, is defined as the probability that two
replicates random by chosen from the n repli-
cates associated with a randomly selected
subject, are identical. More formally p, is
defined as follows:

1 & = nik(nik — 1)
Pa= 2o <Z n(n—1) (16)
i=1 \k=1
Concerning the calculation of chance-agree-
ment probability, several versions have been
proposed in the literature, most of which
are discussed by Conger (17) in the context
of inter-rater reliability, rather than in the
context of intrarater reliability. Fleiss (18)
suggested that chance-agreement probability
be estimated as follows:
q m
) =" p§ where px = % Dik

4 n
k=1 i=1

17

Note that px represents the relative num-
ber of times that a subject is classified into
category k. Fleiss’ generalized kappa is then
given by:

PF = (Pa — P)/(1 — pP).

Conger (17) criticized Fleiss’ generalized
kappa statistic for not reducing to Cohen'’s
kappa when the number of replicates is

Table 7. Frequency Distribution of mn Observations by Subject and Response Category.

Response Category

Subject 1 q Total
1 Ny N1k Nig n

1 Nj1 Nik I"qu n
m Nn1 Nnk Nng n
Total Ni1 Nik Nig mn
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limited to two and proposed the following
chance-agreement probability:

g g
PO =) P - si/n (18)
k=1 k=1
where s? is the sample variance
1 n
$2 = — 1Z(ejk —04)? (19)
j=1

where 6k = mj</m is the percent of subjects
classified into category k on the jth occa-
sion, and 6. is the average of these n values.
To compute the variances sﬁ, k=1,---,q, it
could be useful to organize ratings as in
Table 8.

Both the Fleiss and Conger versions of
kappa are vulnerable to the paradox problem
previously discussed, and they yield reason-
able intrarater reliability coefficients only
when pg, the propensity for classification in
category k, remain fairly constant from cate-
gory to category.

The generalized version of the AC; statis-
tic of Gwet (16) is a more paradox-resistant
alternative to kappa, and it is based on
Equation (14) with the exception that the
chance-agreement probability is defined as
follows:

1

q
P = ——=> pk(1 — p)
a-1=

(20)
where p is defined as in Equation (17).

The situation where intrarater reliability
data are collected by multiple raters may

occur in practice, and it should be dealt
with using special methods that eliminate the
impact of inter-rater variation. The general
approach consists of averaging various prob-
abilities calculated independently for each
rater as previously discussed.

2.3 Statistical Inference

For an intrarater reliability coefficient to be
useful, it must be computed with an accept-
able level of precision; this notion can be
defined and measured only within a for-
mal framework for statistical inference. This
section gives an overview of the main infer-
ential approaches proposed in the literature
and provides references for more inquiries.

Several authors have proposed frame-
works for statistical inference based on var-
ious theoretical models. Kraemer et al. (19)
review many models that have been proposed
in the literature. Kraemer (20) proposed a
model under which the kappa coefficient can
be interpreted as an intraclass correlation.
Donner and Eliasziw (21), Donner and Klar
(22), and Aickin (15) have proposed differ-
ent models that may be useful in different
contexts. This model-based approach poses
two important problems for practitioners.
The first problem stems from the difficulty of
knowing which model is most appropriate for
a particular situation. The second problem
is the dependency of inferential procedures
on the validity of the hypothesized model.
Fortunately, a different approach to infer-
ence based on finite population sampling and
widely used in the social sciences can resolve
both problems.

Table 8. Frequency Distribution of mn Observations by Replicate Number and Response

Category.

Response Category
Replication 1 k e q Total
1 mig M1k . Mg m
] mj1 Mik . Miq m
n Mn1 Mnk . Mnq m
Total myg m_ g Mg mn




The randomization approach or design-
based inference is a statistical inference frame-
work in which the underlying random process
is created by the random selection of m sub-
jects out of a predefined finite population
of M subjects of interest. This approach is
described in textbooks such as Kish (23) and
Cochran (24), and it has been used exten-
sively in the context of inter-rater reliability
assessment by Gwet (16,25). The variances
of many intrarater reliability coefficients pre-
sented in the second section can be found in
Gwet (16,25).

The first two sections present various
approaches for evaluating the reproducibil-
ity of continuous and nominal data. These
approaches are not recommended for ordi-
nal or interval data, although ordinal clinical
measurements such as the presence (no, pos-
sible, probable, definite) of a health condition
as read on a radiograph, are commonplace.
The objective of the next section is to present
a generalization of kappa susceptible for use
with ordinal and interval data.

3 ORDINAL AND INTERVAL SCORE DATA

Berry and Mielke (26) as well as Janson and
Olsson (27,28) have generalized the kappa
statistic to handle ordinal and interval data.
In addition to being applicable to ordinal
and interval data, these extensions can ana-
lyze multivariate data of subjects rated on
multiple characteristics. Although Berry and
Mielke (26) deserve credit for introducing the
notions of vector score and Euclidean dis-
tance behind these extensions, Janson and
Olsson (27) improved and expanded them
substantially.

Let us consider a simple intrarater relia-
bility study in which a rater must rate all five
subjects (m = 5) on two occasions (n =2)on a
three-level nominal scale (q = 3). If the rater
classifies subject 1 into category 2 on the first
occasion, then the corresponding score can be
represented as a vector a;; = (0,1,0), with the
second position of digit “1” indicating the cat-
egory number where the subject is classified.
The vector score associated with the classi-
fication of subject 1 into category 3 on the
second occasion is a;»> = (0,0,1). The squared
Euclidean distance between aj; and ajy is
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obtained by summing all three squared dif-
ferences between the elements of both vectors
and is given by:
d*(a11, a1p)
=(0-024+0-1°+@1-032=2

Following Janon and Olsson (26), Cohen’s
kappa coefficient can re-expressed as follows:

1.5
§2d2( ai1, ai2)
i—1 21)

155
§ZZd2(au, aj2)

i=1j=1

Yio=1-

The kappa coefficient as written in Equation
(21) depends solely on several distance func-
tions. Its generalization relies on the distance
function’s ability to handle ordinal and inter-
val data. If the scoring is carried out on
a three-level ordinal scale, then each score
will represent a single rank instead of three-
dimensional vector of Os and 1s. If the cate-
gories in Table 6 are ordinal, then Equation
(21) can be adapted to that data and yield the
following more efficient kappa coefficient:

M=

q
;pkl(k —1)?

k=1i

q q
> 2 PraPr(k —1)?
k=11=1

Il
N

Yio=1- (22)

To illustrate the use of kappa with ordinal
scores, let us consider Table 9 data, which
are a modification of the initial chest radio-
graph data that Albaum et al. (29) analyzed.
A radiologist has examined 100 initial chest
radiographs on two occasions to determine
the presence of a radiographic pulmonary
infiltrate. The four levels of the measurement
scale for this experiment are “No,” “Possible,”
“Probable,” and “Definite.” Because classifi-
cations of radiographs into the “Probable”
and “Definite” categories agree more often
than those in the “No” and “Definite” cate-
gories, the use of classic kappa of Cohen (2)
will dramatically underestimate the intrarater
reliability.

Cohen's kappa for Table 9 is given by px =
(0.57 — 0.3151)/(1 — 0.3151) ~ 0.37. The gen-
eralized version of kappa based on Equation
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Table 9. Distribution of 100 Subjects by Presence of Radiographic Pulmonary inFiltrate and

Assessment Time

Radiographic Assessment

Radiographic Assessment in Time 2

inTime 1 No Possible Probable Definite TOTAL
No 6 7 2 1 16
Possible 2 7 6 2 17
Probable 2 4 7 5 18
Definite 1 4 7 37 49
TOTAL 11 22 22 45 100

(22) yields an intrarater reliability coefficient
of P30 =1-0.89/2.41 = 0.63. This general-
ized version of kappayields an intrarater reli-
ability coefficient substantially higher and
accounts for partial agreement in a more
effective way.

4 CONCLUDING REMARKS

This article introduces the notion of
intrarater reliability for continuous, nominal,
ordinal, as well as interval data. Although the
intraclass correlation coefficient is the mea-
sure of choice for continuous data, kappa and
kappa-like measures defined by Equations
(11), (13), (14), and (18)—(20) are generally
recommended for nominal data. The exten-
sion of kappa to ordinal data is more efficient
than classic kappa when the data is ordinal,
and it is an important addition to the kappa
literature.

The literature on inter-rater reliability is
far more extensive than that on intrarater
reliability, particularly for discrete data,
which is explained partially by the tendency
researchers have to underestimate the impor-
tance of data reproducibility. Although many
techniques were developed to measure inter-
rater reliability, very few specifically address
the problem of intrarater reliability. In this
article, we have adapted some inter-rater
reliability estimation procedures so they can
be used for computing intrarater reliabil-
ity coefficients. Unlike inter-rater reliability
experiments that involve multiple raters,
multiple subjects, and a single replicate per
subject, intrarater reliability experiments
typically involve a single rater and several
replicates per subject. Consequently inter-
rater reliability methods have been modified

by considering the replicates as ratings from
different independent raters.

Several authors, such as Fleiss and
Cohen (30), Kraemer (20), and others, have
attempted to interpret kappa as well as other
kappa-like reliability measures as a form of
intraclass correlation under certain condi-
tions. The main justification for this effort
stems from the need to link kappa to a popu-
lation parameter and to create a framework
for statistical inference. So far, no clear-cut
theory can establish such a link in a broad
setting. The connection of kappa to the intr-
aclass correlation is unnecessary to have a
good statistical inference framework. A sat-
isfactory solution to this problem is the use
of the finite population inference framework
discussed in Gwet (16, 25).

REFERENCES

1. S. M. Grundy, Second report of the expert panel
on detection, evaluation, and treatment of high
blood cholesterol in adults (Adult Treatment
Panel I1). 1993; National Institutes of Health,
NIH Publication No. 93-3095.

2. J. Cohen, A coefficient of agreement for nomi-
nal scales. Educat. Psychol. Measurem. 1960;
20: 37-46.

3. R. L. Ebel, Estimation of the reliability of
ratings. Psychometrika 1951; 16: 407—-424.

4. J. J. Barko, The intraclass correlation coef-
ficient as a measure of reliability. Psychol.
Reports 1966; 19: 3—11.

5. P. E. Shrout and J. L. Fleiss, Intraclass cor-
relations: uses in assessing rater reliability.
Psychol. Bull. 1979; 86: 420—-428.

6. J. M. Lachin, The role of measurement reli-
ability in clinical trials. Clin. Trials 2004; 1:
553-566.

7. National Health and Nutrition Examination
Survey. 2005.



8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

K. O. McGraw and S. P. Wong, Forming
inferences about some intraclass correlation
coefficients. Psychol. Methods 1996; 1: 30—46.

B. Giraudeau and J. Y. Mary, Planning
a reproducibility study: how many subjects
and how many replicates per subject for an
expected width of the 95 per cent confidence
interval of the intraclass correlation coeffi-
cient. Stats. Med. 2001; 20: 3205-3214.

C. D. Mulrow, B. L. Dolmatch, E. R. Delong,
J. R. Feussner, M. C. Benyunes, J. L. Dietz,
S. K. Lucas, E. D. Pisano, L. P. Svetkey, B. D.
Volpp, R. E. Ware, and F. A. Neelon, Observer
variability in the pulmonary examination. J.
Gen. Intern Med. 2007; 1: 364—367.

J.R. Landis and G. G. Koch, The measurement
of observer agreement for categorical data.
Biometrics 1977; 33: 159-174.

D. V. Cicchetti and A. R. Feinstein, High
agreement but low kappa: Il. Resolving the
paradoxes. J. Clin. Epidemiol. 1990; 43:
551-558.

A. R. Feinstein and D. V. Cicchetti, High
agreement but low kappa: |. The problems
of two paradoxes. J. Clin. Epidemiol. 1990;
43: 543-549.

Brennan, RL, and Prediger, DJ. Coefficient
kappa: some uses, misuses, and alterna-
tives. Educat. Psychol Measurem. 1981; 41:
687-699.

M. Aickin, Maximum likelihood estimation of
agreement in the constant predictive probabil-
ity model, and its relation to Cohen’s kappa.
Biometrics 1990; 46: 293-302.

K. L. Gwet, Computing inter-rater reliability
and its variance in the presence of high agree-
ment. Br. J. Mathemat. Stat. Psychol. 2008.
In press.

A. J. Conger, Integration and generalization
of kappas for multiple raters. Psychol. Bull.
1980; 88: 322-328.

J. L. Fleiss, Measuring nominal scale agree-
ment among many raters. Psychol. Bull. 1971;
76: 378-382.

H. C. Kraemer, V. S. Periyakoil, and A. Noda,
Kappa coefficients in medical research. Stats.
Med. 2002; 21: 2109-2129.

INTRARATER RELIABILITY 13

20. H. C. Kraemer, Ramifications of a popula-
tion model for « as a coefficient of reliability.
Psychometrika 1979; 44: 461-472.

21. A. Donner, M. A. Eliasziw, A hierarchical
approach to inferences concerning interob-
server agreement for multinomial data. Stats.
Med. 1997; 16: 1097-1106.

22. Donner, A, Klar, N. The statistical analy-
sis of kappa statistics in multiple samples.
Journal of Clinical Epidemiology. 1996; 49(9):
1053-1058.

23. K. Kish, Survey Sampling. New York: Wiley,
1965.

24. W. G. Cochran, Sampling Techniques, 3rd ed.
New York: Wiley, 1977.

25. K. L. Gwet, Variance estimation of nominal-
scale inter-rater reliability with random selec-
tion of raters. Psychometrika. 2008. In press.

26. K. J. Berry and P. W. Mielke Jr., A gener-
alization of Cohen’s Kappa agreement mea-
sure to interval measurement and multiple
raters. Educat. Psychol. Measurem. 1988; 48:
921-933.

27. H. Janson and U. Olsson, A measure of
agreement for interval or nominal multivari-
ate observations. Educat. Psychol. Measurem.
2001; 61: 277-289.

28. H. Janson and U. Olsson, A measure of agree-
ment for interval or nominal multivariate
observations by different sets of judges. Edu-
cat. Psychol. Measurem. 2004; 64: 62—70.

29. M. N. Albaum, L. C. Hill, M. Murphy, Y. H. Li,
C. R. Fuhrman, C. A. Britton, W. N. Kapoor,
and M. J. Fine, PORT Investigators. Inter-
observer reliability of the chest radiograph
in community-acquired pneumonia. CHEST
1996; 110: 343-350.

30. J. L. Fleiss and J. Cohen, The equivalence of
weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educat.
Psychol. Measurem. 1973; 33: 613-619.

FURTHER READING

D. C. Montgomery, Design and Analysis of Experi-
ments. New York: John Wiley & Sons, 2004.

D. T. Haley, Using a New Inter-rater Reliabil-
ity Statistic, 2007. Available: http://computing-
reports.open.ac.uk/index.php/2007/200716.

ANOVA Using MS Excel. Available: http://
higheredbcs.wiley.com/legacy/college/mann/
0471755303/excel_manual/ch12.pdf.



14 INTRARATER RELIABILITY
CROSS-REFERENCES

Inter-Rater Reliability

Intraclass Correlation Coefficient
Kappa Statistic

Weighted Kappa

Analysis of Variance (ANOVA)



