APPENDIX (B |

Software Solutions

This appendix provides a brief discussion of the software solutions available to
researchers for computing inter-rater reliability coefficients. The list of software pack-
ages presented here is far from being exhaustive. It merely represents my short list
of products that I recommend the readers of this book to consider. Many packages
offer several options for computing agreement coefficients, although the number of
built-in procedures is quite limited. Specialized add-in packages, functions, or macros
written by independent researcher-programmers compensate this deficiency to some
extent. Among the statistical packages considered here are R, SAS, SPSS, and STATA,
with a particular emphasis on R and SAS. I will also mention some freely-available
online calculators, which generally have limited capability. For MS Excel, AgreeStat
developed by the author of this book, is a user-friendly Excel-based software that is
commercially available in Windows and Mac versions. The Mac version of AgreeStat
requires Mac Office 2011 or a more recent version.

B.1 The R Software

The R package has become an immensely popular statistical package across the
world. If you are going to do statistical analysis on a regular basis for many years, and
you do not know which statistical software to learn, this is one you will want to give a
very serious consideration to. No doubt. You will enjoy the assistance of an extended
online support group where you will be able to ask questions. Moreover, the product
is entirely free, and can be downloaded at http://www.r-project.com . Numerous
quality books have been published to help practitioners and scientists learn how to
use it.

R is an interactive computing environment that makes a large collection of sta-
tistical functions available to you. Using R is about finding the right function and
learning how to use it. R gives you the opportunity to develop your own functions for
performing routine tasks as well as develop completely new packages for advanced

- 349 -

- 350 - Appendix B: Software Solutions

users. Those who are new to R might be interested in the PDF file entitled “Using
R for Introductory Statistics” prepared by John Verzani. It provides a short and
friendly introduction to the R package as well as a good overview of its capabilities.
It can be downloaded at,

http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf

A key feature of R is the opportunity to write your own functions to perform
special analyses. Moreover, several functions aimed at performing similar analyses
are often organized in a package. You must install the R package in an R session so
that you can access its many functions. I will first review so R packages of interest
developed by various authors, before describing a few specific R function that are
freely available online.

B.1.1 R Packages for Computing Inter-Rater Reliability Coefficients

Several R packages are available to practitioners for computing agreement
coefficients. Here is a non-exhaustive list of them:

e irrCAC: Computing Chance-Corrected Agreement Coefficients (CAC), by Gwet,
K.L.
This R package was developed by the author of this book and is available
on the Comprehensive R Archive Network (CRAN). This package implements
most agreement coefficients discussed in this book with the exception of those
special conditional coefficients discussed in chapter 8. A detailed description of
this package can be obtained from the following URL:

https://cran.r-project.org/web/packages/irrCAC/index.html

e irr: Various Coefficients of Interrater Reliability and Agreement, by Matthias
Gamer, Jim Lemon, lan Fellows, and Puspendra Singh.
This R package offers several functions that implement various agreement coef-
ficients. A few coefficients implemented in irr are not implemented in irrCAC,
and vice-versa, there many coefficients in irrCAC are not implemented in the
irr package. A detailed description of this package can be obtained from the
following URL:

https://cran.r-project.org/web/packages/irr /index.html.
e rel: Reliability Coefficients, by Riccardo LoMartire.

This package provides point estimates with confidence intervals for agreement
coefficients proposed by Bennett et al. (1954), Cohen (1960), Conger (1980),

B.1. The R Software - 351 -

Fleiss (1971), Gwet (2008a), Krippendorff (1970) and a few more. Note that
this package implemented Fleiss’ generalized kappa using the standard error
expression proposed by Fleiss et al. (1979). However, the correct expression of
this standard error was proposed by Gwet (2020). A detailed description of this
package can be obtained from the following URL:

https://cran.r-project.org/web/packages/rel /index.html.

e icr: Compute Krippendorff’s Alpha, by Alexander Staudt, and Pierre L’Ecuyer.
This small package focuses on Krippendorff’s alpha coefficient and is described
in details on the following webpage:

https://cran.r-project.org/web/packages/icr /index.html.

B.1.2 Some R Functions for Computing Inter-Rater Reliability
Coefficients

I wrote several stand-alone R functions to compute most chance-corrected
agreement coefficients presented in this book. Readers familiar with the R environ-
ment, could download these functions and modify them to fit their specific needs or
just use them unmodified. Standard errors, confidence intervals, as well as p-values
associated with these coeflicients are calculated by these functions. These R functions
can all be downloaded from the following URL:

https://agreestat.com/software/default.html#rpackage

They are organized in three R script files, corresponding to the three ways your
ratings must be organized:

e agree.coeff2.r

The functions contained in this script file compute various agreement coeffi-
cients and their standard errors when dealing with two raters, and ratings that
are organized in a contingency table (or a square matrix) showing counts of
subjects by rater and category. You may use this format if each rater rated all
subjects. Otherwise subjects rated by one rater and not by the other may not
be properly classified. In this case, you should have two columns of raw scores,
and use one of the functions in the script file agree.coeff3.raw.r.

e agree.coeff3.dist.r
The functions contained in this script file compute various agreement coeffi-
cients and their standard errors when dealing with multiple raters, and ratings
that are organized in the form of an n x g table showing counts of raters by sub-
ject and category. Here n represents the number of subjects and ¢ the number
of categories.

- 352 - Appendix B: Software Solutions

e agree.coeff3.raw.r
The functions contained in this script file compute various agreement coeffi-
cients and their standard errors when dealing with multiple raters, and rating
data organized in the form of an n x r table showing the (alphanumeric) raw
ratings that the raters assigned to the subjects. Here n represents the number
of subjects and r the number of raters. The data is presented in the form of n
rows containing r ratings each.

e weights.gen.r
The functions in this script file generate various weights to be used when com-
puting weighted agreement coefficients.

In order to use any of the functions contained in these script files, you need to
read the appropriate script into R. If you want to use the functions contained in
“agree.coeff2.r” for example, then you will read this file into R as follows:

>source("C:\\AdvancedAnalytics\\R Scripts)\agree.coeff2.r")

R FUNCTIONS IN SCRIPT FILE agree.coeff2.r

If your analysis is limited to two raters, then you may organize your data in a
contingency table that shows the count of subjects by rater and by category. Table
B.1.1 is an example of such data where two neurologists classified 65 patients who
suffer from Multiple Sclerosis into 4 diagnostic categories.

Table B.1.1: Diagnostic Classification of Multiple Sclerosis Patients by
Two Neurologists®

New Orleans | Winnipeg Neurologist
Neurologist 1 2 3 4
1 5 3 0 0
2 3 11 4 0
3 2 13 3 4
4 1 2 4 14

“From Landis and G. (1977)

Here is the list of functions in the script file agree.coeff2.r:
(1) kappa2.table (for Cohen’s unweighted and weighted kappa coefficients)

(2) scott2.table (for Scott’s unweighted and weighted Pi coefficients)

B.1.

The R Software - 3 53 -

(3) gwet.acl.table (for Gwet’s unweighted and weighted AC coefficients)

(4) bp2.table (for Brennan-Prediger unweighted and weighted coefficients)

(5) krippen2.table (for Krippendorff alpha coefficients)

All these functions operate the same way. Therefore, only the first of these func-

tions named kappa2.table is discussed here in details. The same discussion applies
to the other functions as well.

kappa2.table: Cohen’s kappa coefficient for 2 raters

Description

This function calculates the unweighted as well as the weighted Cohen’s kappa
coeflicients for 2 raters whose ratings are summarized in a square contingency
table such as Table B.1.1. Some cells may have 0 values. However, the number
of rows and columns must be equal.

Usage

kappa2.table(ratings,weights=diag(ncol(ratings)),conflev=0.95,
N=Inf,print=TRUE)

Arguments

Of all arguments that this function takes, only the first one is required. The
remaining arquments are all optional.

e ratings: A ¢ X ¢ matrix, where ¢ is the number of categories. This is the only

argument you must specify if you want the unweighted analysis,

weights: A g X ¢ matrix of weights. The default argument is the diagonal
matrix where all diagonal numbers equal to 1, and all off-diagonal numbers
equal to 0. This special weight matrix leads to the unweighted analysis. You
may specify your own ¢ x ¢ weight matrix here as weights=own.weights. If
you want to use quadratic weights with Table B.1.1 data for example, then
the weights parameter would be weights=quadratic.weights(1:4). You may
want to look at the weights.gen.r script for a complete reference of all weight
functions.

conflev: The confidence level associated with the agreement coefficient’s con-
fidence interval.

- 354: - Appendix B: Software Solutions

e N: An optional parameter representing the total number of subjects in the target

subject population. Its default value is infinity, which for all practical purposes
assumes the target subject population to be very large and will not require any
finite-population correction when computing the standard error.

print: An optional logical parameter which takes the default value of TRUE
if you also want the function to output the results on the screen. Set this pa-
rameter to FALSE if you do not want the results to be displayed on the screen.
Setting this parameter to FALSE is recommended if this function is used as
part of another routine.

Details

kappa2.table can accept data in the form of a matrix or in the form of a data
frame as long as the input data supplied can be interpreted as a square ma-
trix. To do the weighted analysis, you may create your own weight matrix, or
use one of the many existing weight-generating functions in the weights.ge.r
script file. Each weight function takes a single mandatory parameter, which is a
vector containing all categories used in the study. The weight functions always
sort all numeric-type category vectors in ascending order. Consequently, the
weighted coefficients are computed properly only if the positions of the columns
and rows in the input dataset are in the same order as the corresponding cat-
egories in the sorted category vector. For alphanumeric-type category vectors,
they are assumed to be already ranked following an order that is meaningful to
the researcher. That is adjacent columns and adjacent rows are associated with
categories that can be considered as partial agreement.

Value

Calling the function kappa2.table returns the following 5 values:

pa: the percent agreement.

pe: the percent chance agreement.

kappa: Cohen’s kappa coefficient.

stderr: the standard error of Cohen’s kappa.

p-value: the p-value of the kappa coefficient.

B.1. The R Software - 355 -

Examples

>ratings<-matrix(c(5, 3, 0, 0, # creates a matrix with Table B.1.1 data

+ 3, 11, 4, 0,
+ 2, 13, 3, 4,
+ 1, 2, 4, 14),ncol=4,byrow=T)

to compute unweighted kappa, its standard error and more
>kappa?2.table(ratings)

The results displayed on the screen will look like this:
Cohen’s Kappa Coefficient

Percent agreement: 0.4782609 Percent chance agreement: 0.2583491
Kappa coefficient: 0.2965166 Standard error: 0.07850387

95% Confidence Interval: (0.1398645, 0.4531686)

P-value: 0.0003361083

to compute weighted kappa with quadratic weights
>kappa2.table(ratings,quadratic.weights(1:4))

the above call assumes the script file weights.gen.r was read into R, and
the results obtained are the following:

Cohen’s Kappa Coefficient

Percent agreement: 0.9098229 Percent chance agreement: 0.7591542
Kappa coefficient: 0.62556814 Standard error: 0.07873187

95% Confidence Interval: (0.4684744, 0.7826884)

P-value: 2.749756e-11

R FUNCTIONS IN SCRIPT FILE agree.coeff3.dist.r

If your experiment involves three raters or more you can no longer summarize
the ratings in a contingency table as previously done for the case of two raters.
One option is to present that data in the form of a table where each row represents
one subject, each column represents one category, and each table cell represents the
number of raters who classified the specified subject into the specified category. Such
a table shows the distribution of raters by subject and by category. Table B.1.2 is an
example of such data where six raters classified 4 patients into 5 diagnostic categories.

- 356 - Appendix B: Software Solutions

Table B.1.2: Distribution of 6 Raters by Subject and Category®

Category
Depression Personality Schizophrenia Neurosis Other
Subject Disorder
A 0 0 0 6 0
B 0 1 4 0 1
C 2 0 4 0 0
D 0 3 3 0 0

“An extract of Table 1 of Fleiss (1971)

The following functions contained in the script file agree.coeff3.dist.r are
what you will need to analyze rating data such as described in Table B.1.2:

1) fleiss.kappa.dist (for Fleiss’s unweighted and weighted kappa coefficients)

(

(3) gwet.acl.dist (for Gwet’s unweighted and weighted AC} coefficients)

(4) bp.coeff.dist (for Brennan-Prediger unweighted and weighted coefficients)
(

5) krippen.alpha.dist (for Krippendorff unweighted and weighted alpha coeffi-
cients)

All these functions operate the same way. Therefore, only the first of these func-
tions named fleiss.kappa.dist is discussed here in details. The same discussion
applies to the other functions as well.

fleiss.kappa.dist: Fleiss’ kappa coefficient for multiple raters

Description

This function calculates the unweighted as well as the weighted Fleiss’ gener-
alized kappa coefficients for multiple raters whose ratings are presented in the
form of a distribution of raters by subject and category such as in Table B.1.2.
A table cell may have a 0 value if none of the raters classified the subject into
the category associated with that cell. The number of raters may vary by sub-
ject leading to a table with different row totals. That will be the case when the
experiment generated missing ratings, with subjects being rated by a different
number of raters.

B.1. The R Software - 357 -

Usage

fleiss.kappa.dist(ratings,weights="unweighted",conflev=0.95,
N=Inf,print=TRUE)

Arguments

Of all arguments used by this function, only the first one is required, the
remaining arguments being all optional. If your goal is limited to unweighted
statistics, then the simple function call fletiss.kappa.dist (ratings) is
sufficient to produce Fleiss’ generalized kappa along with it standard error,
confidence interval, and p-value.

e ratings: This is an n X ¢ matrix or data frame (or matrix), where n is the
number of subjects, and ¢ the number of categories. This is the only argument
that must be specified if you want an unweighted analysis,

e weights: This is a ¢ x ¢ matrix of weights. The default argument is “un-
weighted”. With this option, the function will create a diagonal weight matrix
with all diagonal numbers equal to 1, and all off-diagonal numbers equal to 0.
This special weight matrix leads to the unweighted analysis. You may create
your own ¢ X q weight matrix (e.g. own.weights) and assign it to the weights
parameter as weights=own.weights. If you want to use quadratic weights
with Table B.1.2 data for example, then the weights parameter would be
weights=quadratic.weights(1:5). You may want to look at the weights.gen.r
script for a complete reference of all weight functions available.

e conflev: The confidence level associated with the agreement coefficient’s con-
fidence interval.

e N: An optional parameter representing the total number of subjects in the target
subject population. Its default value is infinity, which for all practical purposes
assumes the target subject population to be very large and will not require any
finite-population correction when computing the standard error.

e print: An optional logical parameter which takes the default value of TRUE
if you also want the function to output the results on the screen. Set this pa-
rameter to FALSE if you do not want the results to be displayed on the screen.

Details

fleiss.kappa.dist can accept input data in the form of a matrix or in the
form of a data frame as long as the input data supplied can be interpreted as a

- 358 - Appendix B: Software Solutions

matrix. To do the weighted analysis, you may create your own weight matrix, or
use one of the many existing weight-generating functions in the weights.ge.r
script. Each weight function takes a single mandatory parameter, which is a
vector containing all categories used in the study. The weight functions always
sort all numeric-type category vectors in ascending order. Consequently, the
weighted coefficients are computed properly only if column positions in the in-
put dataset match those of the corresponding categories in the sorted category
vector. For alphanumeric-type category vectors, they are assumed to already be
ranked following an order that is meaningful to the researcher.

Value

Calling function fleiss.kappa.dist returns the following 5 values:

pa: the percent agreement.

pe: the percent chance agreement.

fleiss.kappa: Fleiss’ generalized kappa coefficient.
stderr: the standard error of Fleiss’ kappa.

p.value: the p-value of Fleiss’ kappa coefficient.

Examples

creates a matrix with Table B.1.2 data
>ratings<-matrix(c(0, 0, 0, 6, O,

+ 0, 1, 4, 0, 1,
+ 2, 0, 4, 0, O,
+ 0, 3, 3, 0, 0),ncol=5,byrow=T)

to compute unweighted Fleiss’ kappa, its standard error and more
>fleiss.kappa.dist(ratings)

The results displayed on the screen will look like this:
Fleiss’ Kappa Coefficient

Percent agreement: 0.5666667 Percent chance agreement: 0.3090278
Fleiss kappa coefficient: 0.3728643 Standard error: 0.2457742
95% Confidence Interval: (-0.409299 , 1)

P-value: 0.2265189

to compute weighted kappa with quadratic weights
>fleiss.kappa.dist(ratings,quadratic.weights(1:5))
the call above assumes the script file weights.gen.r was read into R, and

B.1. The R Software - 359 -

generates the following results:
Fleiss’ Kappa Coefficient

Percent agreement: 0.9270833 Percent chance agreement: 0.8854167
Fleiss kappa coefficient: 0.3636364 Standard error: 0.2525845
Weights:

1 0.9375 0.75 0.4375 0

0.9375 1 0.9375 0.75 0.4375

0.75 0.9375 1 0.9375 0.75

0.4375 0.75 0.9375 1 0.9375

0 0.4375 0.75 0.9375 1

95% Confidence Interval: (-0.4402002 , 1)
P-value: 0.2455769

R FUNCTIONS IN SCRIPT FILE agree.coeff3.raw.r

If your analysis is based on three raters or more we previously saw that one
option is to organize your data as a distribution of raters by subject and by category.
Alternatively, you may report the raw ratings in a table where each row represents
a subject, each column a rater, and each table cell the actual rating assigned by the
rater to the subject. Table B.1.3 is an example of such data where 5 raters classified
4 subjects into 3 categories labeled as {1, 2, 3}.

Table B.1.3: Rating of Four Subjects by Five Raters®

Raters
Subject I II III IV V
A 2 2 3 2 2
B 2 2 2 2 2
C 2 2 2 2 1
D 1 2 2 2 2

“This is Table 2 of Finn (1970)

The following functions contained in the script file agree.coeff3.raw.r are what
you will need to analyze rating data such as described in Table B.1.3:

(1) fleiss.kappa.raw (for Fleiss’s unweighted and weighted kappa coefficients)
(3) gwet.acl.raw (for Gwet’s unweighted and weighted AC; coefficients)

(4) bp.coeff.raw (for Brennan-Prediger unweighted and weighted coefficients)

- 360 - Appendix B: Software Solutions

(5) krippen.alpha.raw (for Krippendorff unweighted and weighted alpha coeffi-
cients)

(5) conger.kappa.raw (for Conger’s unweighted and weighted kappa coefficients)

All these functions operate the same way. Therefore, only the first of these func-
tions named fleiss.kappa.raw is discussed here in details. The same discussion
applies to the other functions as well.

fleiss.kappa.raw: Fleiss’ kappa coefficient for multiple raters & raw ratings

Description

This function calculates the unweighted as well as the weighted Fleiss’ gener-
alized kappa coefficients for multiple raters whose raw ratings are listed hori-
zontally for each subject such as in Table B.1.3. A table cell may be missing if
a rater did not rate a particular subject. When the ratings are alphanumeric
then the blank character is treated as a missing value.

Usage

fleiss.kappa.raw(ratings,weights="unweighted",conflev=0.95,
N=Inf,print=TRUE)

Arguments

Of all arguments used by this function, only the first one is required. The
remaining arqguments being all optional. If your goal is limited to unweighted
statistics, then the simple function call fleiss.kappa.raw(ratings) is
sufficient to produce Fleiss’ generalized kappa along with its standard error,
confidence interval, and p-value.

e ratings: This is an n X r matrix or data frame (or matrix), where n is the
number of subjects, and r the number of raters. This is the only argument that
is required if you want an unweighted analysis.

e weights: This is a ¢ X ¢ matrix of weights. The default argument is “un-
weighted”, and there is no need to specify it explicitly when the unweighted
analysis is what you want. The weights parameter can take any of the fol-
lowing values “quadratic”, “linear”, “ordinal”, “radical”, “ratio”, “circular”,
or “bipolar”. You may refer to the previous chapters for an explicit definition

B.1.

The R Software - 36]. -

of these different weights. You will need to read the weights.gen.r script into
R before this function can perform a weighted analysis.

When the input data is in the form of raw ratings, you may not have a direct
way of obtaining a list of all categories involved in the experiment, especially
if the dataset is large. This makes it more difficult although not impossible to
define your own weight matrix.

conflev: The confidence level associated with the agreement coefficient’s con-
fidence interval.

N: An optional parameter representing the total number of subjects in the target
subject population. Its default value is infinity, which for all practical purposes
assumes the target subject population to be very large and will not require any
finite-population correction when computing the standard error.

e print: An optional logical parameter which takes the default value of TRUE

if you also want the function to output the results on the screen. Set this
parameter to FALSE if you do not want the results to be displayed on the
screen.

Details

fleiss.kappa.raw can accept data in the form of a matrix or in the form
of a data frame as long as the input data supplied can be interpreted as a
matrix. The ratings may be of numeric or alphanumeric types. To perform
the weighted analysis, you need to assign one the values mentioned above to
the weights parameter. If you have the list of categories in your dataset, you
may even create your own weight matrix, or use one of the many existing
weight-generating functions in the weights.ge.r script. Each weight function
takes a single mandatory parameter, which is a vector containing all categories
used in the study. The weight functions always sort all numeric-type category
vectors in ascending order. I assume here that adjacent categories on the sorted
list represent a higher degree of agreement than two categories that are farther
apart.

Value

Calling function fleiss.kappa.raw returns the following 5 values:

e pa: the percent agreement.

e pe: the percent chance agreement.

e fleiss.kappa: Fleiss’ generalized kappa coefficient.

- 362 - Appendix B: Software Solutions

e stderr: the standard error of Fleiss’ kappa.
e p.value: the p-value of Fleiss’ kappa coefficient.
Examples

creates a matrix with Table B.1.3 data
>table.b.3<-matrix(c(

+ 2, 2, 3, 2, 2,

+ 2, 2, 2, 2, 2,

+ 2, 2, 2, 2, 1,

+ 1, 2, 2, 2, 2),ncol=5,byrow=TRUE)

to compute unweighted Fleiss’ kappa, its standard error and more
>fleiss.kappa.raw(table.b.3)

The results displayed on the screen will look like this:
Fleiss’ Kappa Coefficient

Percent agreement: 0.7 Percent chance agreement: 0.735

Fleiss kappa coefficient: -0.1320755 Standard error: 0.05375461
95% Confidence Interval: (-0.3031466 , 0.03899568)

P-value: 0.09110958

to compute weighted kappa with quadratic weights
>fleiss.kappa.raw(table.b.3,weights="quadratic")

the above call assumes that the script file weights.gen.r was previously
read into R, and generates the following results:

Fleiss’ Kappa Coefficient

Percent agreement: 0.925 Percent chance agreement: 0.92625
Fleiss kappa coefficient: -0.01694915 Standard error: 0.06525606
Weights: quadratic

95% Confidence Interval: (-0.5307952 , 0.1907247)

P-value: 0.8118745

B.2 AgreeStat for Excel

At the time this book was published, there were 2 known Excel solutions that I
would recommend practitioners to consider. One of these solutions is non-commercial
while the other is commercial. The non-commercial solution is the Real Statistics
Data Analysis Tools and the commercial solution is AgreeStat360.

B.3. Online Calculators - 363 -

e Real Statistics Data Analysis Tools, by Charles Zaiontz.

The “Real Statistics Data Analysis Tools” is an Excel add-in, which imple-
ments a large number of statistical techniques, including the calculation of sev-
eral inter-rater reliability coefficients. Interested Excel users can obtain more
information regarding the installation of this software from the following URL:

https: //www.real-statistics.com /free-download /real-statistics-resource-pack/

For a detailed description of the capability of this Excel add-in with respect to
the computation of various inter-rater reliability coefficients, you may visit the
following page:

https://www.real-statistics.com /reliability /interrater-reliability /

o AgreeStat360, by K. Gwet.

AgreeStat360 is a commercial Excel-based software for Windows developed
by the author of this book. It is menu-driven and very user-friendly. It can
compute various chance-corrected agreement coefficients, and many versions of
intraclass correlation coefficients. A detailed description of its features can be
obtained from the following URL:

https://agreestat.com /software/default.html#excel

AgreeStat360 implements all chance-corrected agreement coefficients discussed
in this book, including the special conditional agreement coefficients of chapter
8. Moreover, various forms of the intraclass correlation can be calculated as
well, including the optimal sample sizes. Intraclass correlation coefficients are
discussed in more details by Gwet (2021).

B.3 Online Calculators

There are very few non-commercial online inter-rater reliability calculators.
Although most of them are limited to the original two-rater version of Cohen (1960),
a few have implemented Fleiss’ extension to multiple raters as well. These online
calculators are rarely maintained and do not always implement the latest techniques.
Nevertheless, readers interested in the non-commercial options may want to consider
the following 2 solutions:

e StatsToDo: http://www.statstodo.com/Resourcelndex_Subjects.php

e ReCal: http://dfreelon.org/utils/recalfront/

- 364: - Appendix B: Software Solutions

The only genuine cloud-based software for inter-rater reliability assessment is the
commercial AgreeStat360.com. It is regularly maintained, and can be accessed from
the URL agreestat360.com. To compute most agreement coefficients discussed in this
book, all you need is your browser. No installation is required.

If your goal is to compare the difference between 2 agreement coefficients for
statistical significance, you may consider using the free cloud-based AgreeTest de-
veloped by K. Gwet, and which can be accessed from the following URL:

https://agreestat.net/agreetest/

B.4 SAS Software

SAS is one of the major statistical software packages on the market today. It is a
massive software system that has been around for many decades, and which is very
expensive. It would be unwise to consider acquiring this product for the sole purpose
of computing inter-rater reliability coefficients. Those who already have access to
it, will certainly want to know about its capability as far as computing inter-rater
reliability coefficients is concerned.

One of the many SAS modules is known as SAS/STAT. As of its version 14.2,
SAS/STAT offers with the FREQ Procedure, options for computing the AC; coef-
ficient (see Gwet, 2008a) as well as the PABAK coefficient’ (see Byrt et al., 1993),
in addition to Cohen’s Kappa by Cohen (1960) , which was already implemented in
the previous versions. Therefore, SAS users do not need to use another software to
obtain theses statistics.

Note the FREQ Procedure will only compute the extent of agreement between
2 raters and presents some limitations regarding its treatment of missing values. By
default, the FREQ procedure systematically deletes all observations with a missing
rating. Consequently, the results obtained with SAS may differ from those obtained
with functions available in several R packages, if your dataset contains missing rat-
ings. An option is available for instructing the FREQ procedure to treat missing
values as true categories. However, this option is useless for the analysis of agree-
ment among raters. What would be of interest is for Proc FREQ developers to allow
for the marginals associated with both raters to be calculated independently. That
is, if a rating is available from one rater, then it should be used for calculating that
rater’s marginal probability whether or not the other rater rated the same subject
or not.

!The coefficient often referred to by researchers as PABAK is also known (perhaps more rightfully
so) as the Brennan-Prediger coefficient. It was formally studied by Brennan and Prediger (1981) ,
13 years earlier.

B.5. SPSS & STATA = 365 =

If you want to compute the extent of agreement among 3 raters or more, then the
FREQ Procedure can no longer be used. Fortunately, SAS Institute has provided a
very useful Macro program called MAGREFE, which is well documented and imple-
mented several agreement coefficients used in the literature. For more information
about this SAS macro, read Sample 25006: Compute estimates and tests of agreement
among multiple raters from the following URL:

https://support.sas.com/kb/25/006.html
Here is a summary of the purpose of this macro as provided by SAS Institute:

Compute estimates and tests of agreement among multiple raters when
responses (ratings) are on a nominal or ordinal scale. For a nominal re-
sponse, kappa and Gwet’s AC1 agreement coefficient are available. For
an ordinal response, Gwet’s weighted agreement coefficient (AC2) and
statistics based on a cumulative probit model with random effects for
raters and items are available. If the response is numerically-coded (and
possibly continuous), Kendall’s coefficient of concordance is also available.

B.5 SPSS & STATA

STATA is another major statistical software packages, which is more recent
than SAS and SPSS, and which specializes in the medical field. 1 strongly advise
STATA users with interest in interrater reliability assessment to start by read-
ing the very interesting article written by Klein (2018). Moreover, the document
http://www.stata.com/manuals13/rkappa.pdf summarizes the built-in STATA com-
mands related to inter-rater reliability assessment. Unlike SAS and SPSS, STATA
has a built-in procedure for computing the multiple-rater version of kappa proposed
by Fleiss (1971). Unless you are already a STATA user, it would be unwise to ac-
quire this major software for the sole purpose of computing inter-rater reliability
coeflicients.

SPSS is also one of the major statistical software packages on the market today.
Just like SAS, SPSS has been around for a while, and specializes in the social sci-
ences. It offers some limited built-in procedures for computing inter-rater reliability
coefficients and will be useful to researchers who are primarily interested in Cohen’s
kappa (see Cohen, 1960) or its generalized version by Fleiss (see Fleiss, 1971).

For computing Cohen’s Kappa, one can follow the detailed instructions provided
on the following page:

https://statistics.laerd.com /spss-tutorials/cohens-kappa-in-spss-statistics.php

- 366 - Appendix B: Software Solutions

You can compute Fleiss’ generalized Kappa with SPSS. However, the procedure
for doing it depends on the version of SPSS you are using. Researchers interested in
this procedure can obtain more information from the following URL:

https://statistics.laerd.com/spss-tutorials/fleiss-kappa-in-spss-statistics.php

B.6 Concluding Remarks

In this appendix, I reviewed some of what I consider to be among the most in-
teresting software options for researchers involved in inter-rater reliability assessment.
The number of software solutions available to researchers for computing inter-rater
reliability coefficients has increased dramatically since the first edition of this book.
R and Excel users have more options to choose from than others. However, SAS and
STATA users can also rely on very useful macro programs and functions developed
by independent researchers. SPSS on the other hand, offers very few options, which
are all limited to Cohen’s Kappa and its generalized Fleiss’ version. More details
regarding all these software solutions can be obtained from the following URL:

https://agreestat.com/software/default.html

Before using a particular software package for calculating inter-rater reliability
coefficients, researchers need to find out how that package handles missing ratings.
Many programs made available to the general public do not have a well-defined strat-
egy for dealing with missing ratings, which are known to be an important problem
in many inter-rater reliability experiments. Even some existing R functions proposed
in some publicly-available R packages such as ‘irr’ or ‘concord’ tend to exclude
from analysis any subject that was not rated by all raters. This crude strategy may
eliminate a substantial amount of data collected during the experiment. This may
not a problem if it is the way you want missing data to be handled. But a better
strategy would be to use every single data point that was gathered as recommended
throughout this book.

