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Components

OBJECTIVE
This chapter provides a high-level overview of Principal Component Analysis (PCA).

It is a statistical technique used for analyzing multivariate, correlated data by trans-

forming the original variables into new uncorrelated indicators called Principal Com-

ponent Scores (PCS). You will learn that these indicators are ordered based on the

proportion of total variation they capture, allowing the first few components to repre-

sent the majority of the data’s variability. PCA effectively reduces dimensionality by

replacing multiple correlated variables with fewer composite scores, making it easier

to interpret complex datasets. You will also see through a geometric approach that

PCA rotates the coordinate system to align the data with the principal components,

facilitating a simplified representation while retaining critical information about the

dataset.
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1.1 Introduction

Principal Component Analysis (PCA) is recommended for an-

alyzing multivariate, correlated data. When each unit of analysis

has a large number of quantitative attributes, it becomes nearly

impossible to extract meaningful insights from the dataset. Key

questions arise: Which units are similar? Are some attributes more

relevant than others? Are there outliers in the dataset that should

be discarded? These are some of the critical questions an analyst

seeks to answer.

If the units of analysis are to be examined using a single vari-

able, then you are dealing with a one-dimensional problem. With

two attributes, the problem becomes two-dimensional. In one-

dimensional problems, you can conveniently rank all units along

that dimension to get an initial understanding of your data and

gain insights about the units of analysis. For two-dimensional

problems, you can conduct basic exploratory data analysis using

a scatter plot of the two variables, providing a practical and effec-

tive visual representation of your data. However, beyond two vari-

ables, the problem becomes three-dimensional, making the data

structure difficult to interpret. In real-world scenarios, you will

often encounter multi-dimensional problems involving dozens of

variables. Extracting a coherent story from the data becomes a

challenging task. This is where PCA proves valuable.

PCA is a statistical technique that involves taking a specific

number of variables and replacing them with an equivalent number
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of new indicators called Principal Component Scores (PCS). These

scores act as surrogates for the original attributes and possess the

following properties:

� The new indicators can be ranked in descending order ac-

cording to the percentage of total variation in the data they

account for.1 The first few indicators are expected to account

for most of the variation in the dataset.

� The new indicators are uncorrelated, meaning there is no

redundancy in the information each indicator provides. In

other words, each indicator reveals a unique aspect of the

dataset.

� Collectively, the new indicators must account for 100% of the

total information contained in the original dataset. However,

the concentration of information in the first few indicators

allows for a reduction in the problem’s dimensionality.

Various terms are used in the literature to refer to Principal

Component Scores. They are often called “Composite Scores,”

“Composite Score Variables,” or “Composite Score Indicators.”

Some texts may mistakenly refer to them as “Principal Com-

ponents.” In reality, the term “Principal Component” refers to

something else, which I will discuss in detail later in this chap-

ter. Personally, I prefer the terms “Composite Score Variable” or

“Composite Score Indicator,” as any value taken by these vari-

ables is a composite score.
1Note that the amount of information contained in a dataset is measured by the variation

that exists across the different units of analysis.
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1.2 Illustrating Composite Score Variables

To gain an understanding of what Principal Component Anal-

ysis (PCA) does, let’s consider the measurements of two variables,

X and Y , taken on 12 units, as shown in Table 1.1. The corre-

lation coefficient2 between X and Y is 0.76, indicating a strong

positive linear relationship. Thus, the information carried by these

two variables is largely redundant.

If you are only interested in X, you could rank the 12 units

based solely on their X values and divide them into more ho-

mogeneous groups. However, if both variables are of interest, the

problem becomes two-dimensional. The data can be represented

by a scatter plot, as shown in Figure 1.1. From the plot, it is evi-

dent that as X increases, Y tends to increase as well, confirming

the positive correlation.

This raises a few important questions:

Can you still group the 12 units into more homogeneous

clusters, where homogeneity is defined by both X and

Y ? Is it possible to rank the units based on their X and

Y values simultaneously? If so, what metric would be

appropriate for this ranking?

In the rest of this section, I will explore how composite scores

appear in this simple scenario and how they can be effectively

used. Additionally, I will discuss the technical challenges that may

arise when calculating these composite scores.

2A correlation coefficient quantifies the degree of linear relationship between two variables.
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Table 1.1: Measurements of 2 variables X and Y taken on 12 unitsa

Unit X Y

1 6.15 7.77

2 7.12 6.62

3 7.37 7.78

4 7.43 8.45

5 7.51 8.29

6 7.57 7.91

7 7.64 8.73

8 7.76 8.52

9 7.81 7.96

10 7.92 8.48

11 7.95 8.74

12 8.02 8.38

aNote that these are the first 12 observations of a larger dataset of 50 units. The larger
dataset can be downloaded in CSV format using the following link: https://agreestat.co
m/books/knn/datasets/xydata.csv
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Figure 1.1: Scatter plot of the 2 variables X and Y of Table 1.1

https://agreestat.com/books/knn/datasets/xydata.csv
https://agreestat.com/books/knn/datasets/xydata.csv


1.2. Illustrating Composite Score Variables - 7 -

If the X and Y values represent grades assigned by a teacher

for two exams, you could calculate the average of both grades

for each student to obtain a composite score, which can then be

used to rank the students. Alternatively, if the grades are for a

midterm and a final exam, you might assign a higher weight to

the final exam, resulting in a weighted composite score for each

student. The choice of how to weight the scores is entirely up to

you. Regardless of the method used, the goal remains the same:

to combine two scores into a single value for easier analysis. This

is a simple example of dimensionality reduction. By creating a

composite score, you reduce a two-dimensional problem to a more

manageable one-dimensional format.

When selecting a dimensionality-reduction method, you may

not always have the luxury of choosing your approach. For in-

stance, consider an economist trying to identify key determinants

of economic growth, with countries as the unit of analysis. Suppose

the two variables of interest are the inflation rate and the female

fertility rate (the average number of children per woman). In this

scenario, it’s impractical to weight these variables arbitrarily, as

they represent distinct factors.

A solution is to compute a linear combination of these vari-

ables that maximizes their ability to distinguish between coun-

tries. Principal Component Analysis (PCA) addresses this need

by transforming the original variables into two composite vari-

ables: the first captures most of the variation in the data, while

the second captures the remaining marginal variation. By retain-

ing the first composite variable, you can effectively summarize the
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dataset with minimal loss of information.

I conducted a Principal Component Analysis (PCA) on the

data presented in Table 1.1, resulting in two composite score vari-

ables, PCX and PCY , as shown in Table 1.2. Each composite score

variable is a linear combination of the original variables X and Y ,

calculated as follows:

PCX = 0.60643×X + 0.79514× Y
PCY = 0.79514×X − 0.60643× Y

(1.2.1)

For each individual unit, PCX is computed by multiplying the X

value by 0.60643 and the Y value by 0.79514, then summing the

two products. Similarly, PCY is calculated using the same proce-

dure as outlined in Equation 1.2.1. Note that PCX represents the

linear combination with the highest variance, while PCY captures

the second highest variance.

One of the main challenges in conducting Principal Component

Analysis (PCA) is determining the linear coefficients in Equation

1.2.1. In Chapter 2, I will demonstrate how to compute these co-

efficients using Excel. However, a thorough understanding of the

computational procedure for deriving these coefficients typically

requires knowledge in linear algebra, matrix algebra, and calcu-

lus, including concepts such as Lagrange multipliers. Claims of

performing this analysis without the use of algebra or calculus

should be approached with skepticism, as they may lack the nec-

essary rigor.

If you are serious about gaining a thorough understanding of
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the mathematics underlying PCA3, I highly recommend starting

with Singh (2014). Titled “Linear Algebra: Step by Step,” this

book is one of the most valuable resources on linear algebra that

I have encountered. For a discussion on applying linear algebra

and calculus to PCA with practical Excel implementation, refer

to Gwet (2020). Additionally, Cohen (2022) offers a gentle intro-

duction to linear algebra specifically tailored for data science.

In Section 1.3, I will provide a brief overview of the geometric

interpretation of PCA to offer further insights into the topic. For a

detailed discussion on how the geometric problem translates into

linear algebra and calculus, consult Gwet (2020).

Table 1.2 demonstrates that the two composite variables are

uncorrelated, indicating that each conveys unique information.

Notably, the first composite variable, PCX , explains 77.6% of the

total variation in the data. As a result, analysis of all 12 units

can be effectively reduced to a single dimension by relying solely

on PCX . In contrast, the original variables, X and Y , are highly

correlated, meaning they provide redundant information. Con-

sequently, selecting either X or Y individually would not yield

meaningful insights, as their information cannot be usefully dis-

entangled.

Figure 1.2 presents a scatter plot of the two composite vari-

ables. Aside from the two data points labeled 1 and 2, the dataset

shows minimal variation along the PCY axis. Most of the variation

is concentrated along the PCX axis.

3This depth of understanding is not necessary for most practitioners who are focused on
applying PCA to real-world problems.
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Figure 1.2: Scatterplot of the composite variables PCX and PCY of Table 1.2

Table 1.2: Measurements of 2 variables X and Y taken on 12 units

Unit X Y PCX PCY

1 6.147 7.767 9.903 0.177

2 7.115 6.620 9.579 1.643

3 7.367 7.779 10.653 1.141

4 7.425 8.454 11.225 0.777

5 7.510 8.292 11.148 0.943

6 7.575 7.913 10.885 1.224

7 7.644 8.730 11.577 0.784

8 7.763 8.520 11.483 1.006

9 7.808 7.957 11.062 1.383

10 7.917 8.480 11.543 1.153

11 7.953 8.737 11.770 1.026

12 8.022 8.384 11.532 1.294

Variance 0.258 0.346 0.469 0.136

Total Variance 0.605 0.605

% Total Variance 42.7% 57.3% 77.6% 22.4%

Correlation 0.972 0
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1.3 Geometric Framework for Principal Component Analy-

sis

Consider, for example, the data presented in Figure 1.3. Each

data point is represented by its coordinates in the original coordi-

nate system, defined by the natural basis (~ı,~). It is important to

note that these data points seem to vary along the horizontal~ı axis

almost as much as they do along the vertical ~ axis. As a result,

both axes are essential for a thorough analysis of the dataset.
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Figure 1.3: Scatter plot of a two-variable dataset in the initial (~ı,~) coordinate
system

Now, consider a new coordinate system defined by a basis of

two vectors, ~u and ~v. From Figure 1.3, it is evident that the data

points vary much more along the ~u axis than along the ~v axis. Con-
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sequently, if you wish to examine the data in a one-dimensional

space using a single axis, you could focus solely on the ~u axis,

which captures a significant portion of the data’s variation. In do-

ing so, you effectively reduce the initial two-dimensional analysis

problem to a one-dimensional one. This is the fundamental idea

behind dimensionality reduction techniques.

If the basis of the new coordinate system maximizes the

variation of the data along one axis, then the vectors ~u

and ~v will be referred to as principal components. The co-

ordinates of your data points in this new system, defined

by the principal components, are known as the principal

component scores, or composite scores.

As shown in Figure 1.3, if you project your data points onto

the ~u axis, you will obtain the first principal component (PC)

scores. Similarly, projecting onto the ~v axis will yield the second

PC scores.

Next, you can display your data points using their coordinates

in the new coordinate system defined by the principal components,

as illustrated in Figure 1.4. This figure is produced by performing

an approximately 30◦ clockwise rotation of the initial (~u,~v) axes.

Let me clarify a common source of confusion regarding the term

“Principal Component” in the literature. A coordinate system is

defined by its basis vectors. When basis vectors, such as (~u,~v),

meet certain criteria (e.g. orthogonality, maximal data variation

in one direction,...), they are referred to as principal components.

The coordinates of your data points in this new coordinate system
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are known as “Principal Component Scores.”

However, the term “Principal Component” is often used to refer

to both the basis vectors and the principal component scores,

which can lead to ambiguity. In most cases, the context will clarify

the correct meaning.

−3 −2 −1 1 2 3

−1.5

−1

−0.5

0.5

1

1.5

~u

~v

x

y

Figure 1.4: Scatterplot of a two-variable dataset in the alternative (~u,~v)
coordinate system of principal components.

In general, the PCA of an n-dimensional problem yields a new

coordinate system consisting of n principal components. These

principal components are ordered by the proportion of total vari-

ation in the data that each explains, in descending order. The first

principal component captures the largest portion of the variation,

followed by the second principal component, which captures the

second largest portion, and so on.
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At this point, you can decide whether to retain only the first

component, the first two components, or more, depending on the

amount of total variation you are willing to ignore. This selec-

tion process is key to the dimensionality reduction technique that

PCA provides, making it highly effective for simplifying complex

datasets.

1.4 Concluding Remarks

Principal Component Analysis (PCA) serves as a powerful di-

mensionality reduction tool for multi-dimensional data analysis.

By transforming the original correlated variables into a new set

of uncorrelated components, PCA enables the representation of

data in fewer dimensions without significant loss of information.

The principal components are ordered by the amount of variation

they capture, allowing analysts to focus on those that explain the

most significant portion of the data’s variability. This transfor-

mation simplifies complex datasets into manageable forms while

preserving the most critical aspects of the information.

The ability to reduce dimensionality while retaining essential

variation makes PCA particularly useful in real-world applications

where large datasets often involve dozens or even hundreds of

variables. By choosing an appropriate number of components to

retain, one can strike a balance between reducing the complexity

of the data and maintaining accuracy. Ultimately, PCA enhances

data interpretability and enables more effective decision-making

by identifying the key dimensions that contribute to the overall
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structure and variation in the dataset.

Geometrically, PCA can be understood as rotating the original

coordinate system to align the axes with the directions of maxi-

mum data variance. In this new coordinate system, each principal

component axis captures as much variation as possible, with the

first component explaining the greatest variance. By projecting

the data onto the first few principal component axes, one can ef-

fectively reduce the dimensionality of the data, retaining most of

the original structure. This geometric interpretation provides in-

tuitive insight into how PCA condenses the dataset’s complexity

while highlighting the most meaningful patterns and relationships.


