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Computing Principal

Components

OBJECTIVE
In this chapter, I will demonstrate how to use the Multivariate.xlsm Excel tem-

plate to perform Principal Component Analysis (PCA). This template is compatible

exclusively with the Windows version of Excel and has been tested specifically on

Microsoft 365. Unfortunately, it is not supported by the Mac version of Excel.
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2.1 Introduction

Throughout this chapter, I will use the Iris flower dataset to

demonstrate how Principal Component Analysis (PCA) can be

performed in Excel. This dataset is well-known and widely used

in the field of machine learning for testing purposes (see Fisher,

1988). It consists of 150 iris flower samples, spanning three species:

Iris setosa, Iris virginica, and Iris versicolor. Each sample is char-

acterized by four variables, representing the length and width (in

centimeters) of two botanical parts, namely the sepal and petal.

For simplicity, I randomly selected 20 records from the original

dataset to create a smaller dataset, referred to as Iris20. This

reduced dataset is shown in Table 2.1. The iris dataset can be

downloaded from the link https://bit.ly/4dmWAAK, while the

iris20 dataset can be obtained from https://bit.ly/3WMxTGZ.

Both datasets are in Excel format.

Before performing PCA, it is common practice to standardize

the dataset. Standardization involves dividing each variable by

its non-zero standard deviation, resulting in a dataset where each

variable has a standard deviation of 1.

The primary purpose of standardization is to eliminate poten-

tial biases in the PCA process due to one variable having naturally

high variation. For instance, income tends to be more variable than

height, and without standardization, income might disproportion-

ately influence the computation of principal component scores,

even if it doesn’t provide the greatest discriminatory power.

https://bit.ly/4dmWAAK
https://bit.ly/3WMxTGZ
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Another essential procedure is data centering. Centering in-

volves subtracting the mean of each variable from its values, giv-

ing all variables a baseline of 0. This procedure often improves

the robustness of certain machine learning algorithms. Centering

is typically performed before standardization.

If a variable in the dataset maintains a constant value across all

observations (i.e., has a standard deviation of zero), it should be

removed. Such a variable does not contribute useful information

for distinguishing between different units of analysis and offers

no value to the PCA process. Remember, the goal of PCA is to

identify new composite variables with maximum variation.

The iris20 dataset shown in Table 2.1 consists of 20 samples,

representing all three iris species, and contains four numeric vari-

ables: S.Length, S.Width, P.Length, and P.Width. PCA will focus

on these four variables. The variable Species is merely an attribute

of the flower and cannot differentiate between two flowers of the

same species, so it will not be used in the analysis. Only variables

that uniquely define each flower are relevant for this analysis.

Table 2.2 presents the input data after they have been centered

and standardized. Centering shifts the mean of each variable to 0

by subtracting the mean from each value. Standardization (also

called scaling) further transforms each variable by dividing the

values by their standard deviation, resulting in standardized vari-

ables with a standard deviation of 1.

Centering and scaling are recommended for computational rea-

sons. In both statistical computing and machine learning, algo-
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rithms tend to perform better with centered and scaled data. If

large-scale and small-scale data are used in the same algorithm,

they may not be treated uniformly, leading to unpredictable out-

comes.

Table 2.1: An extract of 20 randomly chosen records from the iris
flower dataseta

Sepal Petal

Case# Species S.Length S.Width P.Length P.Width

55 versicolor 6.5 2.8 4.6 1.5

136 virginica 7.7 3.0 6.1 2.3

116 virginica 6.4 3.2 5.3 2.3

68 versicolor 5.8 2.7 4.1 1.0

100 versicolor 5.7 2.8 4.1 1.3

24 setosa 5.1 3.3 1.7 0.5

109 virginica 6.7 2.5 5.8 1.8

21 setosa 5.4 3.4 1.7 0.2

137 virginica 6.3 3.4 5.6 2.4

50 setosa 5.0 3.3 1.4 0.2

122 virginica 5.6 2.8 4.9 2.0

18 setosa 5.1 3.5 1.4 0.3

129 virginica 6.4 2.8 5.6 2.1

146 virginica 6.7 3.0 5.2 2.3

93 versicolor 5.8 2.6 4.0 1.2

112 virginica 6.4 2.7 5.3 1.9

36 setosa 5.0 3.2 1.2 0.2

94 versicolor 5.0 2.3 3.3 1.0

15 setosa 5.8 4.0 1.2 0.2

58 versicolor 4.9 2.4 3.3 1.0

aThis dataset is a subset of the larger and widely-used iris dataset provided
by Fisher (1988)
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When variables are centered, they all share the same baseline

value of 0. After standardization, they also have the same range

or spread, ensuring that no single variable disproportionately in-

fluences the analysis due to large natural variations.

Table 2.2: Standardized Iris flower dataset of Table 2.1

Sepal Petal

Case# Species S.Length S.Width P.Length P.Width

55 versicolor 0.83893 -0.43570 0.46100 0.26250

136 virginica 2.42431 0.03533 1.31470 1.23927

116 virginica 0.70682 0.50635 0.85939 1.23927

68 versicolor -0.08587 -0.67121 0.17643 -0.34797

100 versicolor -0.21799 -0.43570 0.17643 0.01831

24 setosa -1.01068 0.74187 -1.18949 -0.95845

109 virginica 1.10316 -1.14224 1.14396 0.62879

21 setosa -0.61434 0.97738 -1.18949 -1.32473

137 virginica 0.57470 0.97738 1.03013 1.36136

50 setosa -1.14280 0.74187 -1.36023 -1.32473

122 virginica -0.35011 -0.43570 0.63174 0.87298

18 setosa -1.01068 1.21289 -1.36023 -1.20264

129 virginica 0.70682 -0.43570 1.03013 0.99508

146 virginica 1.10316 0.03533 0.80248 1.23927

93 versicolor -0.08587 -0.90672 0.11952 -0.10378

112 virginica 0.70682 -0.67121 0.85939 0.75089

36 setosa -1.14280 0.50635 -1.47405 -1.32473

94 versicolor -1.14280 -1.61326 -0.27887 -0.34797

15 setosa -0.08587 2.39046 -1.47405 -1.32473

58 versicolor -1.27491 -1.37775 -0.27887 -0.34797


