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Using Principal Components

OBJECTIVE
After learning how to compute principal components in Chapter 2, this chapter will

guide you on how to utilize them effectively. You will discover how to determine the

minimum number of principal components needed to capture the key dimensions for

analyzing your data. Additionally, you will gain insights into what these principal

components represent in relation to the original variables and how they can be applied

in further analyses of your dataset.
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3.1 Introduction

After performing a Principal Component Analysis (PCA), the

next step is to interpret the components in relation to your original

data before deciding how to use them. This chapter addresses two

key objectives: first, interpreting the principal components, and

second, applying them to a specific problem.

The main questions when interpreting principal components

are:

� How many principal components should be retained for fur-

ther analysis?

� Which original variables are the key contributors to each com-

posite score variable?

A key goal of PCA is dimensionality reduction. This chapter

provides guidelines for determining whether your data should be

represented in two, three, or more dimensions.

PCA has many practical applications. In this chapter, you will

see how it can be used to identify the most relevant variables and

detect outliers in multivariate datasets. In Part II of this book,

we will explore how PCA can improve the efficiency of cluster

analysis procedures.
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3.2 Interpreting Principal Components

This section demonstrates how to determine the optimal num-

ber of principal components and how to identify key contributing

variables using the Iris20 dataset, previously discussed in Chapter

2.

3.2.1 Optimal Number of Principal Components

To determine the number of principal components to retain,

the eigenvalues (ranked from highest to lowest) must be carefully

examined. For the Iris20 dataset, the eigenvalues are presented

in Table 3.1, which will be central to determining the optimal

number of principal components.

Table 3.1: Percent of variance explained by the principal components

Component# Eigenvalue Variance(%) Cumul. Var.(%)

1 2.8800 72.0% 72.0%

2 0.9379 23.5% 95.5%

3 0.1707 4.3% 99.7%

4 0.0114 0.3% 100.0%

Each eigenvalue represents the variance of the associated com-

posite score variable. To minimize the number of dimensions, re-

tain the smallest number of components that explains an accept-

able proportion of the total variance. The challenge is balancing

the number of dimensions while capturing most of the dataset’s

variability.
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Table 3.1 shows the eigenvalues1 and their associated variance

percentages. The first eigenvalue (λ1 = 2.88) explains 72% of

the total variance, and the second (λ2 = 0.9379) explains 23.5%,

meaning that together, the first two principal components account

for 95.5% of the total variance.

The Eigenvalues are depicted in Figure 3.1, where you can see

the percent variance explained going down as the principal com-

ponent number goes up. This specific figure is known as the Scree

Graph or the Scree Plot.

Several methods exist for selecting the number of principal

components, but many are heuristic or subjective. Ferré (1995)

acknowledges the absence of an ideal solution, while Jolliffe (2002)

suggests that statistically-based procedures offer no clear advan-

tage over simpler ones. Readers interested in comparing methods

can refer to Zwick and Velicer (1986) or Jackson (1993) . In this

section, we review three widely used methods.

Kaiser’s rule, proposed by Kaiser (1960) recommends retaining

principal components with eigenvalues greater than 1, which is

the baseline variance of the original standardized variables. Based

on this criterion, the first two components would be retained, ac-

counting for almost 95.5% of the total variance.

Jolliffe (2002) proposes a modification, suggesting that compo-

nents with eigenvalues larger than 0.7 should be retained, which

would include all four components in this case. Reducing Kaiser’s

1In linear algebra literature, an Eigenvalue value is often labeled as λ, which is the Greek
character “lambda.”
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threshold for component retention to 0.7 supposedly accounts for

statistical errors that may understate the actual value of those

eigenvalues that exceed 1.

Cattell’s scree plot criterion Cattell (1966) suggests looking for

the point in the scree plot where the curve flattens, indicating

diminishing returns from additional components. The “elbow” in

Figure 3.1 occurs after the second component, supporting the re-

tention of two components.
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Figure 3.1: Scree graph of the Principal Component Analysis performed on
the Iris20 dataset of chapter 2

As Jolliffe (2002) stated, “The first point on the straight line

is then taken to be the last factor/component to be retained.” In

other words, “... The specific PC number defining an ‘elbow’ in the

graph is taken to be the number of components to be retained.”

The data point associated with PC#3 in Figure 3.1 could be seen
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as the elbow. However, there is no clear-cut elbow in this scree

plot, with the last line segment, linking the two lowest data points,

being almost horizontal. One may argue that the elbow starts from

PC#2, which would lead to retaining the first two components.

In my opinion, there is no need for an objective, general-purpose

method to determine the optimal number of principal components.

Ultimately, the number of components to retain depends on the

goal of the analysis. Some researchers may focus solely on the first

principal component to extract a single composite score that sum-

marizes the entire dataset. Others may be interested in detecting

outliers, in which case retaining two principal components may be

more appropriate (see Section 3.3.2). If principal component scores

are to be used as independent variables in a regression model, one

might retain a sufficiently large number of principal components

to ensure that all initial variables are adequately represented. Fur-

ther discussion on these topics can be found in Section 3.2.2.

In section 3.2.2, you will see how to interpret principal compo-

nents with respect to the original variables using their loadings.

3.2.2 Principal Component Loadings

Comparing composite score variables to the original at-

tributes is good practice as it helps develop a strong understanding

of their meaning. By doing so, you can identify the original vari-

ables that contribute most to each composite score variable. The

first step towards this goal is to compute the principal compo-

nent loadings. A component loading is the correlation coefficient
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between an original attribute and a composite score variable.

Table 3.2 shows the component loadings for all four princi-

pal components. You will notice that three out of four original

variables have high positive coefficients with the first principal

component. Only Sepal.Width has a moderate negative correla-

tion with it. However, Sepal.Width has a high positive correla-

tion with the second principal component. The correlations of the

original attributes with the third and fourth components are neg-

ligible. Therefore, you can use only the first two components in

subsequent analyses while accounting for the contributions of all

four initial attributes. Moreover, the first two components explain

95.5% of the total variance, as shown in Table 3.1. The remaining

4.5% of unexplained variance may well be statistical noise that

can be safely ignored.

Table 3.2: Principal component loadings for the Iris20 dataset

Principal Component #

Variable 1 2 3 4

Sepal.Length 0.8489 0.4388 0.2937 0.0211

Sepal.Width -0.4977 0.8579 -0.1263 -0.0203

Petal.Length 0.9934 -0.0333 -0.0704 -0.0847

Petal.Width 0.9617 0.0910 -0.2520 0.0584

How are Table 3.2 loadings calculated?

1 The general approach for calculating PC loadings is by using
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the following expression:

Loadings = Eigenvectors×
√

Eigenvalues

Stdev
, (3.2.1)

where “Stdev” is the standard deviation of the original vari-

able. For the Iris20 dataset, there are 4 eigenvectors of 4

elements each, 4 eigenvalues, and a standard deviation for

each of the 4 variables.

2 If your input data is centered and standardized2, then com-

ponent loadings can be calculated by multiplying each eigen-

vector by the square root of the associated eigenvalue. That

is expression 3.2.1 where Stdev = 1.

3 If your data is non standardized, then you need to first obtain

the standard deviation of each input variable before apply

expression 3.2.1.

4 Alternatively, you may proceed with the direct computation

of these correlations, 2 original attribute and 1 composite

score variable at a time.

To illustrate how the values in Table 3.2 are calculated, consider

the loadings for Principal Component #1, found in column 2 of the

table. The PC#1 loadings are 0.8489, -0.4977, 0.9934, and 0.9617.

These values are obtained by multiplying each element of PC#1

in Table 3.3 by the square root of 2.8800, the first eigenvalue in

Table 3.1. For example, 0.8489 = 0.5002×
√

2.8800.

2The “Multivariate.xlsm” Excel template gives you this option, as well as 2 other options.
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The loadings for PC#2 are obtained by multiplying each el-

ement of the PC#2 eigenvector in Table 3.3 by the square root

of 0.9379, the second eigenvalue in Table 3.1. You can follow a

similar process for the remaining loadings.

Table 3.3: Principal components / eigenvectors produced by the PCA of the
Iris20 dataset (see Figure 2.11 of chapter 2

Principal Component #

Variable 1 2 3 4

Sepal.Length 0.5002 0.4531 0.7110 0.1971

Sepal.Width -0.2933 0.8858 -0.3056 -0.1895

Petal.Length 0.5853 -0.0344 -0.1703 -0.7919

Petal.Width 0.5667 0.0940 -0.6099 0.5459

In PCA literature, the terms eigenvectors and loadings

are often used interchangeably. Should they be? No, they

shouldn’t. Loadings are correlation coefficients and are

more easily interpretable. However, since loadings are

proportional to eigenvectors, using either one to iden-

tify the most important contributing attributes to the

composite scores is correct.

3.3 Applications of Principal Components

To illustrate a few applications of Principal Component Anal-

ysis (PCA), I will use a dataset containing 1979 employment data

of 26 European countries. This dataset, referred to as Euro1979,

contains the percentage of the labor force in different industries by


