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Principal Components and
Linear Algebra

OBJECTIVE
This chapter provides a short review of linear and matrix algebra concepts that are
relevant in the study of principal components. I do believe that without an in-depth
understanding of the notions of coordinate systems and change of basis, it is near im-
possible to have a good grasp of principal components. Therefore, part of this chapter
is devoted to showing how a dataset can be graphically represented in different coor-
dinate systems. For researchers who like to understand how principal components are
actually calculated, I introduce some key concepts in matrix algebra, such as matrix
similarity, characteristic polynomials, eigenvalues, eigenvectors and the method of
Lagrange multipliers. You are not required to have any specific prerequisite to find
this chapter useful since I start with the simplest examples before moving to the
more complex ones. However, any prior knowledge of linear and matrix algebra will
help.
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“The man who grasps principles can successfully select his own
methods. The man who tries methods, ignoring principles, is sure
to have trouble.”

Ralph Waldo Emmerson (May 25, 1803 - April 27, 1882)

1.1 Introduction

Principal Component Analysis (PCA) is recommended if you want to
analyze multivariate correlated data. If a single variable is measured, then you
can rank all subjects according to that variable, get a first look at your data
and learn something about your subjects. If 2 variables are measured, then a
basic exploratory data analysis based on a scatter plot can provide you with a
practical and effective visual description of your data. Beyond 2 variables, our
problem becomes three-dimensional and our view of the data structure blurry.
Extracting a useful story from our data becomes a challenging task. PCA is a
statistical technique that consists of taking a large set of variables of interest
and narrow it down to a smaller and conceptually more coherent set of variables
called the “Principal Components.”

Depending upon your interest and the extent to which you want to under-
stand the underlying mathematics, the study of principal components can be
more or less time-consuming. I decided to start with the simplest case involv-
ing only 2 variables, where PCA is not needed, before moving on to the more
complex situation where its use becomes essential. The rationale behind this
approach is that the mathematics necessary for 2 variables are simple and can
be used as a stepping stone for the study of multivariate data, which requires
some linear and matrix algebra.

To have a glimpse into what PCA does, consider the measurements associ-
ated with 2 variables X1 and X2 taken on 12 subjects and shown in Table 1.1.
If X1 is the only variable of interest to you, then you can rank all 12 subjects by
X1 or compute summary statistics such as the mean, the median, the standard
deviation and others. These indicators will give you a good first look at your
dataset. If both variables are of interest, then your data can be depicted as
shown in figure1 1.1. You can see a positive correlation between the 2 variables
indicating that as variable X1 increases, so is variable X2. The rate at which

1Note that figure 1.1 is based on a larger dataset of 50 subjects from which Table 1.1
was extracted. The larger data can be downloaded in CSV format using the following link:
https://agreestat.com/books/princomp/datasets/x1x2data.csv

https://agreestat.com/books/princomp/datasets/x1x2data.csv
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one of the 2 variables increases with respect to the other can be approximated
with basic linear regression techniques.

Table 1.1: Measurements of 2 variables X1 and X2 taken on 12 subjects

Subject X1 X2

1 6.15 7.77
2 7.12 6.62
3 7.37 7.78
4 7.43 8.45
5 7.51 8.29
6 7.57 7.91
7 7.64 8.73
8 7.76 8.52
9 7.81 7.96
10 7.92 8.48
11 7.95 8.74
12 8.02 8.38

Now, what do you do if you want to characterize each subject with respect to
both variables X1 and X2? If these scores were grades that a teacher assigned
to students in 2 exams, then you could average both grades associated with
each student and obtain a composite grade for the class before using it to rank
the students. Alternatively, if the grades are for an interim and a final exams,
then the final could receive a higher weight than the interim, which will result
in a weighted composite score for each student. How you weight both series of
scores in this situation is entirely up to you. Any technique you use has the
same objective, which is to transform 2 scores into a single score to simplify
analysis. This is one of the simplest examples of dimensionality reduction. By
creating a single composite score, you reduce a two-dimensional problem to a
one-dimensional problem.

You will not always have the option of selecting your own dimensionality-
reduction method. Suppose you are an economist attempting to discover the
key determinants of economic growth, that the subject is a country and the 2
variables are the country inflation rate and its female fertility rate. Then you
can no longer arbitrarily weight both variables. Instead, you need to compute a
linear combination of the 2 variables that will discriminate the different coun-
tries the most. This is precisely what Principal Components Analysis does. It
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takes both variables and derive a single variable (the principal component) that
best captures the variability in your data. There will generally be a smaller lost
of variability (hopefully negligible) captured by a second principal component
that we will be able to safely ignored.
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Figure 1.1: Scatter plot of 2 variables X1 and X2 based on 50 observations

Consider Figure 1.2 where the same 50 subjects of Figure 1.1 are plotted
on a different coordinate system defined by the 2 principal components PC1

and PC2 (I will later discuss how these principal components are calculated).
It follows that the PC1 axis alone approximates the set of observations better
than any one of the initial axes X1 or X2. That is, the orthogonal projection
of all observations onto the line along PC1 (see Figure 1.3) produces more
variation than the orthogonal projection of the same observations onto any
other axis conceivable. Consequently, your data analysis along the PC1 axis
alone will still tell you more of what you need to know about your data than
any other one-dimensional coordinate system.

The coordinates of the 50 data points in the new coordinate system are
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on a different scale when compared to their representation in the standard
coordinate system of Figure 1.1. The data location is different as well. However,
you can always shift that location at will by adding a constant value to the
coordinates. But it is not recommended to rescale these coordinates as such an
operation will jeopardize the statistical properties of the principal components.
I will further discuss about these issues in subsequent chapters.

The number of principal components is always the same as the number
of variables. The main advantage of principal components lies in that they
are uncorrelated and they are ranked in descending order of the proportion of
total variance each of them can explain. Therefore, the bigger proportion of
total variance is concentrated on the first few principal components, making it
possible to built a sound analysis on a small set of uncorrelated variables that
are easier to interpret.

Many researchers want to have some understanding of the way principal
components are constructed. My intend is to provide a detailed description of
the building blocks in this process. However, this will require some introduc-
tion to matrix algebra. Matrix algebra is not as important when dealing with
2 variables, as it is when dealing with a large number of variables. This intro-
ductory note to matrix algebra is provided in section 1.2, where I review the
important link between matrix algebra and the resolution of systems of linear
equations. The important method of Lagrange multipliers for finding solutions
to optimization problems will be reviewed in section 1.3.
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Figure 1.2: Scatter plot of the 2 principal components PC1 and PC2 based on
the same 50 observations of figure 1.1
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Figure 1.3: Plot of the first principal component PC1 based on the same 50
observations of figure 1.1

1.2 Basic Matrix Algebra

The resolution of systems of linear equations is essential in the method
of Lagrange multipliers, which is needed to compute principal components.
Before I tackle the method of Lagrange multipliers in section 1.3, I am going to
provide a brief introduction to systems of linear equations, matrices and their
use in linear transformations and in defining new coordinate systems. Even if
you have previously been exposed to these notions in a linear algebra class,
note that the emphasis here is less on the underlying mathematics and more
on their interpretation in the context of multivariate data analysis.

Systems of linear equations occur in various contexts in the real world.
Consider the following problem:

The admission fee at a small fair is $1.50 for children and $4.00
for adults. On a given day 2,200 people enter the fair and $5,050 is
collected. How many children and how many adults attended?

Let me define 2 variables x = “Number of children” and y = “Number of adults.”
These 2 variables are suggested by the very question at the end of the prob-
lem statement. No need to look far for what the 2 unknowns should be. The
fact that 2,200 people have entered the fair translates mathematically into the
equation x + y = 2,200. Since the total revenue is $5,500 and has been gen-
erated by the children and the adults, I can formulate this mathematically as


