
CHAPTER
�

�
	4

Exploratory Data Analysis with

Tidyverse

OBJECTIVE

In this chapter, you will learn to conduct a data analysis project with R, using the

tidyverse package. Of all R packages, tidyverse is the one you will likely use the

most in your data analysis tasks. It provides many very powerful functions for reading

or transforming large datasets (millions of records and thousands of variables), as

well as for creating various summary statistics. After reading this chapter, I expect

you to be able to take a dataset in Excel and create several types of summary tables

using the R package tidyverse.

Contents

4.1 Introduction . 103

4.2 Basic Analysis of R Datasets . 104

4.2.1 Exploring R Datasets . 107

4.2.2 Slicing Datasets . 108

4.2.3 Using the Pipe Operator 119

4.2.4 Producing Summary Statistics 123

4.2.5 Miscellaneous Useful Functions 138

4.3 Combining Datasets . 146

4.3.1 Using Base R . 148

- 101 -

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 102 - Chapter 4: Exploratory Data Analysis with Tidyverse

4.3.2 Using the Tidyverse Package 152

4.4 Concluding Remarks . 160

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.1. Introduction - 103 -

4.1 Introduction

The primary objective of this chapter is to introduce what I consider to

be the basic tools any analyst needs to perform data analysis. Using these R

tools, the analyst is expected to be more efficient than if the same analysis was

done with Excel. Reproducibility, automation, precision and documentation

are expected to be the 4 biggest gains you can expect to obtain using R. The

price to pay for this gain in efficiency is to comply with the requirements of

organizing all of your input data in a logical way before analysis can begin, and

to learn some R commands. In R, you will not be looking at your data with

your naked eyes before a specific calculation is done, as you would in Excel.

Instead, R will interpret your commands and do the work for you. This would

be impossible with a disorganized input dataset.

Tidyverse is one of the most popular packages among R analysts. It pro-

vides a plethora of tools for making data wrangling easier, more efficient and

will be at the center of the discussions in this chapter. There is so much

that you can do with tidyverse that it would be unrealistic and inefficient to

present a comprehensive review of its capability. I want to help Excel users

have a smooth transition to R as I did myself several years ago. After you gain

experience with R, you may obtain more information on tidyverse by visiting

the web pages https://www.tidyverse.org/ or https://tidyverse.tidyverse.org/.

Although tidyverse is often referred to as an R package, it is actually a

collection of R packages that are popular among analysts. To use tidyverse,

you need to install it on your machine, then load it to the current R session.

Installing tidyverse on your machine is done by going to the RStudio console

pane and typing the following command:

> install.packages("tidyverse")

Once installed, you can load tidyverse to the current environment ei-

ther from Rstudio console, or within your R script with the following com-

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://www.tidyverse.org/
https://tidyverse.tidyverse.org/

- 104 - Chapter 4: Exploratory Data Analysis with Tidyverse

mand: library(tidyverse) . This command automatically loads the core

tidyverse packages, which is a collection of packages you will need in your

every day analysis. I will occasionally mention these specific packages as we

move along.

In section 4.2, you will learn the basics of dataset manipulation and the cal-

culation of summary statistics. Section 4.3 addresses the important problem of

combining different datasets in R. Advanced statistical techniques such as re-

gression analysis, or the Analysis Of Variance (ANOVA) were briefly discussed

in chapter 2, but are out of scope for this book.

4.2 Basic Analysis of R Datasets

One of the built-in datasets in R is named USPersonalExpenditure and

consists of the United States personal expenditures (in billions of dollars) in

the following 5 categories:

� “food and tobacco” • “household operation” • “medical and health”

� “personal care” • “private education”

This data is available for the years 1940, 1945, 1950, 1955 and 1960. I am

going to use this information to illustrate different techniques for manipulating

R datasets with tidyverse.

You may want to know that typing the command > data() on

RStudio console will display all built-in datasets in R. You can get a

detailed description of a particular dataset such as

USPersonalExpenditure by typing the command

> ?USPersonalExpenditure on the RStudio console (do not omit

the question mark "?" before typing the dataset name).

If you type > USPersonalExpenditure on the console, you will obtain the

following output:

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.2. Basic Analysis of R Datasets - 105 -

Table 4.1 : R Built-in R Dataset USPersonalExpenditure

1940 1945 1950 1955 1960

Food and Tobacco 22.200 44.500 59.60 73.2 86.80

Household Operation 10.500 15.500 29.00 36.5 46.20

Medical and Health 3.530 5.760 9.71 14.0 21.10

Personal Care 1.040 1.980 2.45 3.4 5.40

Private Education 0.341 0.974 1.80 2.6 3.64

I want to make a few comments about this dataset :

� Table 4.1 is an R data frame, and not a tibble1. But I previously rec-

ommended to always use tibbles. Therefore, I need to convert this data

frame to a tibble, causing the loss of expense description. I will then need

to create a new column of expense description to the new tibble.

� The column names of this data frame are numbers. For easy reference

later on, I will replace all of them with y1940, y1945, y1950, y1955, y1960

so that the variable names start with a character, and not with a number.

These 2 objectives will be achieved after running Script 4.1. This script file

is divided in 2 parts. Part 1 renames the data frame from its original name

USPersonalExpenditure to a shorter an more convenient name spending.df.

My data frame or tibble naming convention is to end the names with “.df” so

I can easily identify data frames by their names. Next, I change the column

names by left-padding the “y” character to the original numeric names. This

yields the new data frame shown in Table 4.2 .

In part 2, I first create a vector variable named expense, which contains

all row names of the spending.df data frame, which in turn is converted

to a tibble named xpense.df using the as_tibble function (note that the

1Note that tibbles do not have row names and the description of expenses in the above
table are only row names and not elements of a dataset column (no column name).

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 106 - Chapter 4: Exploratory Data Analysis with Tidyverse

tibble only contains the 4 numeric columns). Finally, using the add_column()

function, I add expense as a new column to the xpense.df tibble, right before

the first variable y1940. The result is the complete tibble shown in Table 4.3

and which I will analyze in the next few sections.

Script 4.1. Script for converting the data frame USPersonalExpenditure to
tibble

library(tidyverse)
#Part 1: Renaming the dataset and column labels
spending.df <- USPersonalExpenditure #rename dataset
clabels <- c("y1940","y1945","y1950","y1955","y1960")
colnames(spending.df) <- clabels

#Part 2: Convert dataframe to tibble and add new expense column
expense <- rownames(spending.df) #assign row names to a variable
xpense.df <- as_tibble(spending.df) #convert dataframe to tibble
xpense.df <- add_column(xpense.df,expense,.before = "y1940")

print(spending.df)
print(xpense.df)

End of Script

Table 4.2 : The spending.df data frame after renaming its column labels

y1940 y1945 y1950 y1955 y1960

Food and Tobacco 22.200 44.500 59.60 73.2 86.80

Household Operation 10.500 15.500 29.00 36.5 46.20

Medical and Health 3.530 5.760 9.71 14.0 21.10

Personal Care 1.040 1.980 2.45 3.4 5.40

Private Education 0.341 0.974 1.80 2.6 3.64

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.2. Basic Analysis of R Datasets - 107 -

Table 4.3 : The newly-created tibble xpense.df

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

2 Household Operation 10.5 15.5 29 36.5 46.2

3 Medical and Health 3.53 5.76 9.71 14 21.1

4 Personal Care 1.04 1.98 2.45 3.4 5.4

5 Private Education 0.341 0.974 1.8 2.6 3.64

4.2.1 Exploring R Datasets

Before you start analyzing a dataset, you must first inspect and explore

it to become familiar with its content. Inspect and explore are 2 tasks, which

are not near as important in Excel as they are in R. Remember that in Excel,

you can manually select the part of your worksheet you want to process before

applying a function to it. In R, you must provide instructions for the software

to do it for you. Therefore, your input data must be better organized and you

must know its structure very well. Otherwise, you will never be able to give

the right instructions to R for accomplishing a specific task.

I typically use 3 R functions to perform a preliminary exploration of my

dataset. These functions are the following:

� > head(xpense.df,n=3) returns the first 3 records of the data frame
xpense.df. It is the head of the dataset, defined by the top 3 observa-
tions.

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

2 Household Operation 10.5 15.5 29 36.5 46.2

3 Medical and Health 3.53 5.76 9.71 14 21.1

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 108 - Chapter 4: Exploratory Data Analysis with Tidyverse

� > tail(xpense.df,n=3) returns the last 3 records of the data frame
xpense.df. It is the tail of the dataset defined by the last 3 observations.

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Medical and Health 3.53 5.76 9.71 14 21.1

2 Personal Care 1.04 1.98 2.45 3.4 5.4

3 Private Education 0.341 0.974 1.8 2.6 3.64

� > summary(xpense.df) returns basic summary statistics for each nu-
meric variables in your dataset. The summary() function gives you a
glimpse into the distribution of each variable. You get the smallest value
(Min.), the first quartile, the median, the mean, the third quartile and
the maximum value, as shown below.

expense y1940 y1945 y1950

Length:5 Min. : 0.341 Min. : 0.974 Min. : 1.80

Class :character 1st Qu.: 1.040 1st Qu.: 1.980 1st Qu.: 2.45

Mode :character Median : 3.530 Median : 5.760 Median : 9.71

Mean : 7.522 Mean :13.743 Mean :20.51

3rd Qu.:10.500 3rd Qu.:15.500 3rd Qu.:29.00

Max. :22.200 Max. :44.500 Max. :59.60

y1955 y1960

Min. : 2.60 Min. : 3.64

1st Qu.: 3.40 1st Qu.: 5.40

Median :14.00 Median :21.10

Mean :25.94 Mean :32.63

3rd Qu.:36.50 3rd Qu.:46.20

Max. :73.20 Max. :86.80

4.2.2 Slicing Datasets

Exploring small portions of a bigger dataset is another effective way of

learning about its content. R offers a variety of powerful functions you can use

to extract specific information from your dataset. As a beginner, you need to

focus on a few useful functions, and not make the mistake of attempting to

know it all.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.2. Basic Analysis of R Datasets - 109 -

� Selecting columns

A common task many Excel users perform is to hide columns not needed

for a specific analysis or unhide what was previously hidden. This allows

the analyst to have easy access to the most relevant data columns, without

having to constantly scan a large number of columns or variables. To

accomplish this task, R offers a far superior capability with the powerful

select() function. To see this, consider the personal expense data of

Table 4.3 for illustration purposes only2.

If you want to select specific columns such as expense, y1955 and y1960,

then you will type the following command:

select(xpense.df,expense,y1955,y1960) ,

in a script or directly on RStudio console. This will yield the following
data extract:

> select(xpense.df,expense,y1955,y1960)

A tibble: 5 x 3

expense y1955 y1960

<chr> <dbl> <dbl>

1 Food and Tobacco 73.2 86.8

2 Household Operation 36.5 46.2

3 Medical and Health 14 21.1

4 Personal Care 3.4 5.4

5 Private Education 2.6 3.64

Now, suppose that you want all columns from Table 4.3 , except "y1940".

You can do this with the command select(xpense.df,-y1940) . If

you want to exclude "y1940" and "y1945" from the dataset, you use

select(xpense.df,-c(y1940,y1945)) .

To fully appreciate how powerful the select() function is, suppose you

only want to look into personal expenses in the fifties. The solution would

2The select() function will prove very useful when a dataset contains a large number of
columns.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 110 - Chapter 4: Exploratory Data Analysis with Tidyverse

be to select all variables, which start with "y195". This solution would

be implemented as follows:

select(xpense.df, expense, starts_with("y195"))

After executing this command, the RStudio console will look like this:

> select(xpense.df,expense,starts_with("y195"))

A tibble: 5 x 3

expense y1950 y1955

<chr> <dbl> <dbl>

1 Food and Tobacco 59.6 73.2

2 Household Operation 29 36.5

3 Medical and Health 9.71 14

4 Personal Care 2.45 3.4

5 Private Education 1.8 2.6

Now, suppose you only want to track personal expenses at the beginning

of each decade. The solution would be select all variables, which end with

a 0. This solution would be implemented as follows:

select(xpense.df,expense,ends_with("0")) .

This command will produce the following output:

> select(xpense.df,expense,ends_with("0"))

A tibble: 5 x 4

expense y1940 y1950 y1960

<chr> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 59.6 86.8

2 Household Operation 10.5 29 46.2

3 Medical and Health 3.53 9.71 21.1

4 Personal Care 1.04 2.45 5.4

5 Private Education 0.341 1.8 3.64

An alternative way of restricting your analysis to personal expenditures

in the fifties would be to retain all variables that contain the string of

characters "95". You would do it with the following command:

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.2. Basic Analysis of R Datasets - 111 -

select(xpense.df,expense, contains("95")).

Another way of resolving this same problem using the starts_with()

function is: select(xpense.df, expense,starts_with("y195")) . Note

that you can also use column numbers with the select() function. For

example, select(xpense.df,1:3) extracts the first 3 columns, whereas

select(xpense.df,c(1,3)) extracts columns 1 and 3.

The select() function is very powerful, and can be used for

selecting columns programmatically. That is, you can make R execute

commands within the select() function by supplying other

functions as parameters (e.g. starts_with() was used in the

previous paragraph as parameter).

Once again, consider the xpense.df dataset of Table 4.3 .

– Selecting 1 Column. Suppose you want to select from xpense.df,

a single column such as "y1945". Then you have 2 options. Either

you select it as a one-column dataset, or as a numeric vector.

To create a one-column tibble, use select(xpense.df,y1945) , or

xpense.df["y1945"] , or xpense.df[3] . These commands will

all return the following :

> xpense.df["y1945"]

A tibble: 5 x 1

y1945

<dbl>

1 44.5

2 15.5

3 5.76

4 1.98

5 0.974

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 112 - Chapter 4: Exploratory Data Analysis with Tidyverse

One-variable or one-column datasets are uncommon in practice,

since one often prefers the vector, which is the basic data struc-

ture in R. If you want to extract column y1945 as a vector, you

can do so with xpense.df$y1945 or xpense.df[["y1945"]] , or

xpense.df[[3]]. Each of these commands will yield the following

output:

[1] 44.500 15.500 5.760 1.980 0.974

Another tip you may want to know is that you can create a new

dataset by removing a specific column or variable you do not want

to see. For example select(xpense.df,-y1945) or xpense.df[-3]

will create a version of the xpense,df dataset without the y1945

variable.

– Selecting Multiple columns

If you want a two-column tibble, which is based on the variables

"y1945" and "y1955", then you would need to execute one of the

following commands: select(xpense.df,y1945,y1955) , or

xpense.df[c("y1945","y1955")] , or xpense.df[c(3,5)]. The

result will be the following dataset:

A tibble: 5 x 2

y1945 y1955

<dbl> <dbl>

1 44.5 73.2

2 15.5 36.5

3 5.76 14

4 1.98 3.4

5 0.974 2.6

� Selecting Rows

Another task Excel users perform often is to hide specific rows that are

not needed, or unhide previously hidden rows that have become relevant.

Tidyverse offers a very useful filer() function. Suppose that in Table

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.2. Basic Analysis of R Datasets - 113 -

4.3 , you want to select all expenses that exceeds 6.0 billion dollars in

1940 and 1950. This query can be performed as follows:

filter(xpense.df,y1950>6.0 & y1940>6.0) .

As it turned out, only the following 2 records meet the required condition:

> filter(xpense.df,y1950>6.0 & y1940>6.0)

A tibble: 2 x 6

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

2 Household Operation 10.5 15.5 29 36.5 46.2

You can filter records where personal expenditures were 29 billion dollars

in 1950 by typing filter(xpense.df,y1950==29) in the RStudio con-

sole. Note that the logical “equal” operator in R is “==” as opposed to

“=”. The regular equal sign (“=”) is interpreted in R as an assignment

operator similar to "<-".

Here is a list of the most commonly-used logical operators in R.

Operator Description

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== exactly equal to

!= not equal to

!x Not x

x | y x OR y

x & y x AND y

isTRUE(x) test if X is TRUE

You can find a more detailed description of these operators in section A.2

of appendix A.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 114 - Chapter 4: Exploratory Data Analysis with Tidyverse

� Sorting Datasets

Although there are several ways of sorting an R dataset, I often use

the tidyverse approach. In tidyverse, sorting a tibble3 amounts to

arranging its rows in descending or ascending order by one or multiple

columns used as sort keys.

To sort your dataset, you will use the arrange() function. For example,

you can sort the dataset of Table 4.3 (or arrange its rows) in ascend-

ing order (the default option) by the magnitude of the 1945 personal

expenditures, using the following lines of code:

library(tidyverse)

s1945.df <- arrange(xpense.df,y1945)

print(s1945.df)

Executing the above script will produce the following output in the RStu-
dio console:

> s1945.df <- arrange(xpense.df,y1945)

> print(s1945.df)

A tibble: 5 x 6

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Private Education 0.341 0.974 1.8 2.6 3.64

2 Personal Care 1.04 1.98 2.45 3.4 5.4

3 Medical and Health 3.53 5.76 9.71 14 21.1

4 Household Operation 10.5 15.5 29 36.5 46.2

5 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

You can see that the script file has created a new dataset named sq945.df,

which is sorted by y1945 in ascending order. If you want to sort the

s1945.df dataset by y1945 in descending order, you would do it as fol-

lows:

3Remember that throughout this book, I assume all datasets to be tibbles, and use the
words dataframe, dataset and tibble interchangeably.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.2. Basic Analysis of R Datasets - 115 -

arrange(s1945.df,desc(y1945)) .

Note that the first argument of function arrange() function is the dataset

name, followed by one or several names of columns by which the sorting

will be done. These column names must be separated with commas.

� The slice() family of functions

In the course of your analysis, you may want to extract the records as-

sociated with the 2 highest or lowest values of a specific variable, which

could also be the current ranking of the records. Here is where the very

useful slice() family of functions comes in. When selecting rows, con-

sider the functions head(), tail(), filter(), and the slice() family

of functions. One of these functions will likely resolve your problem.

Once again, I want to use the dataset of Table 4.3 to illustrate the

slice() family of functions.

– slice(xpense.df,n=c(1,4)) This will extract the first and 4th

record of the xpense.df dataset. Executing this command produces

the following outcome:

> slice(xpense.df,n=c(1,4))

A tibble: 2 x 6

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

2 Personal Care 1.04 1.98 2.45 3.4 5.4

While the first parameter of function slice() is the dataset name,

the second parameter n= will contain a vector of numbers repre-

senting the row numbers that must be extracted from the dataset.

The function call slice(xpense.df,n=3) for example will return

the third row of the xpense.df dataset.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 116 - Chapter 4: Exploratory Data Analysis with Tidyverse

– slice_head(xpense.df,n=2) , will return the top 2 rows in dataset

xpense.df. This could be useful for datasets that are already sorted.

This function is similar to the head() function.

– slice_tail(xpense.df,n=2) , will return the bottom 2 rows in

dataset xpense.df and is similar to the tail() function. Again, this

could be informative if the dataset is already sorted (or arranged).

– slice_min(xpense.df,order_by = y1945,n=2) will return the 2
rows associated with the 2 lowest y1945 values.

> slice_min(xpense.df,order_by = y1945,n=2)

A tibble: 2 x 6

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Private Education 0.341 0.974 1.8 2.6 3.64

2 Personal Care 1.04 1.98 2.45 3.4 5.4

Function slice_min() does not require the dataset to be sorted, yet

can help you explore it with respect to the magnitude of the y1945

variable.

– slice_max(xpense.df,order_by = y1945,n=2) will return the 2
rows associated with the 2 highest y1945 values, and does not require
the dataset to be sorted. Executing it produces the following output:

> slice_max(xpense.df,order_by = y1945,n=2)

A tibble: 2 x 6

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

2 Household Operation 10.5 15.5 29 36.5 46.2

– slice_sample(xpense.df,n=3) will return 3 records, randomly

selected (without replacement) from the xpense.df dataset. Here

is an example of output you will obtain after calling this function:

> slice_sample(xpense.df,n=3)

A tibble: 3 x 6

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.2. Basic Analysis of R Datasets - 117 -

expense y1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Personal Care 1.04 1.98 2.45 3.4 5.4

2 Household Operation 10.5 15.5 29 36.5 46.2

3 Private Education 0.341 0.974 1.8 2.6 3.64

� Adding New Columns/Variables

You learned earlier in this section that you can use the select() function

to eliminate columns you do not want to use. But can you add new

columns that do not exist in your dataset? The answer is yes, you can

achieve this by using the mutate() function.

Consider the dataset of Table 4.3 , and suppose that you want to add 2

columns to it. The first column is the mean personal expenditure of the

last 2 years 1955 and 1960. The second column is a record id assigned to

each record, sequentially from 1 to 5 in increments of 1. This task can

be accomplished with the following command:

mutate(xpense.df, av55_60=(y1955+y1960)/2, rec_id=1:5) ,

Executing this command will yield the following outcome on RStudio
console:

> mutate(xpense.df,av55_60=(y1955+y1960)/2,rec_id=1:5)

A tibble: 5 x 8

expense y1940 y1945 y1950 y1955 y1960 av55_60 rec_id

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>

Food and Tobacco 22.2 44.5 59.6 73.2 86.8 80 1

Household Operation 10.5 15.5 29 36.5 46.2 41.4 2

Medical and Health 3.53 5.76 9.71 14 21.1 17.6 3

Personal Care 1.04 1.98 2.45 3.4 5.4 4.4 4

Private Education 0.341 0.974 1.8 2.6 3.64 3.12 5

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 118 - Chapter 4: Exploratory Data Analysis with Tidyverse

Note that the add_column() function used in Script 4.1 can also

add new columns/variables to a dataset. However, this function can

only access objects in the workspace and cannot access other

variables in the dataset like the mutate() function.

� Renaming Columns

tidyverse allows you to rename your dataset columns using the 2 func-

tions rename() and rename_with(). On RStudio console, the com-

mand > rename(xpense.df,year1940=y1940) creates a new dataset

from xpense.df, after changing the old variable name y1940 to the new

one year1940. If you execute this command, you will obtain the following

outcome:

> rename(xpense.df,year1940=y1940)

A tibble: 5 x 6

expense year1940 y1945 y1950 y1955 y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

2 Household Operation 10.5 15.5 29 36.5 46.2

3 Medical and Health 3.53 5.76 9.71 14 21.1

4 Personal Care 1.04 1.98 2.45 3.4 5.4

5 Private Education 0.341 0.974 1.8 2.6 3.64

If you want to save this newly-crated dataset then assign the return of

the rename() function to an R object as follows:

> new_xpense.df <- rename(xpense.df,year1940=y1940)

The rename_with() function on the other hand, makes it easier to re-

name variables programmatically, and can be useful for renaming not one

variable, but a series of variables. For example, if you want to change all

column names in the xpense.df to uppercase letters, you can do it as

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

4.2. Basic Analysis of R Datasets - 119 -

follows: > rename_with(xpense.df,toupper) . If you only want to re-

name all variables that start with letter "y", it can be done with the com-

mand > rename_with(xpense.df,toupper,starts_with("y")) . If you

execute these 2 commands, you will get the following 2 outputs:

> rename_with(xpense.df,toupper)

A tibble: 5 x 6

EXPENSE Y1940 Y1945 Y1950 Y1955 Y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

2 Household Operation 10.5 15.5 29 36.5 46.2

3 Medical and Health 3.53 5.76 9.71 14 21.1

4 Personal Care 1.04 1.98 2.45 3.4 5.4

5 Private Education 0.341 0.974 1.8 2.6 3.64

> rename_with(xpense.df,toupper,starts_with("y"))

A tibble: 5 x 6

expense Y1940 Y1945 Y1950 Y1955 Y1960

<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Food and Tobacco 22.2 44.5 59.6 73.2 86.8

2 Household Operation 10.5 15.5 29 36.5 46.2

3 Medical and Health 3.53 5.76 9.71 14 21.1

4 Personal Care 1.04 1.98 2.45 3.4 5.4

5 Private Education 0.341 0.974 1.8 2.6 3.64

As you can see, R provides so many powerful functions for managing your

datasets that with a single line of code, you can achieve results that would take

a long time with Excel.

4.2.3 Using the Pipe Operator

So far, you have learned how to use various functions to explore your

R datasets. However, as you move on to conduct important projects, you must

be organized and must develop a good work ethic, or you might end up with

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 120 - Chapter 4: Exploratory Data Analysis with Tidyverse

a script file too cluttered to be readable. It will be error-prone and difficult to

maintain.

I can tell from experience, that if you are going to make your R

journey successful, you must know what the powerful Pipe Operator

is, and how to use it effectively.

The pipe operator is denoted by %>% . Unless you are a computer

scientist, this is likely the first time you are seeing this weird combination of

symbols. To see how useful it is, consider the dataset of Table B.1 in appendix

B, containing US 2020 quarterly Gross Domestic Product (GDP) statistics

broken down by state, and whose extract is shown in Table 4.4 below4. Let

this dataset be called state.df.

Table 4.4 : 2020 US Quarterly Gross Domestic Product (GDP) by State -
Extract of Table B.1 of Appendix B

A tibble: 51 x 7

region state Q1GDP Q2GDP Q3GDP Q4GDP pop2019

<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 New England Connecticut 284418 258045 278963 284265 3558382

2 New England Maine 70824 64445 70412 71406 1342845

3 New England Massachusetts 597756 545422 591547 595183 6887571

4 New England New Hampshire 90373 81024 88842 90245 1358406

5 New England Rhode Island 61799 56825 61273 62327 1054930

6 New England Vermont 34378 30804 34028 34529 623417

7 Mideast Delaware 77068 71628 76380 78070 970344

8 Mideast District of C 146252 138511 145338 148118 701570

9 Mideast Maryland 421334 387137 414207 420021 6010629

10 Mideast New Jersey 638654 577108 624411 634144 8872796

... with 41 more rows

Assume that you want to conduct an analysis that focuses on quarter 4

GDP data and on Mideast states. In other words, the final analytic file (named

mideast.df) you need for analysis is the following:

4You may download the entire dataset using the link: https://bit.ly/3zVi72k

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

https://bit.ly/3zVi72k

4.2. Basic Analysis of R Datasets - 121 -

A tibble: 6 x 3

state gdpQ4y2020 pop2019

<chr> <dbl> <dbl>

1 Delaware 78070 970344

2 District of Columbia 148118 701570

3 Maryland 420021 6010629

4 New Jersey 634144 8872796

5 New York 1777389 19428617

6 Pennsylvania 793893 12795687

The very first problem you must tackle is to figure out how to go from the

main dataset of 51 records and 7 variables, to the smaller dataset of 6 records

and 3 variables. To resolve this problem, you need the select() function

to keep the columns you want, and the filter() function to keep the rows

associated with the Mideast region. Here are 3 possible ways you can implement

this in R:

� Solution 1: Intermediate Datasets

rowx.df <- filter(state.df,region=="Mideast")

mideast.df <- select(rowx.df,state,Q4GDP,pop2019)

print(mideast.df)

� Solution 2: Nested Functions

mideast.df <- select(filter(state.df,region=="Mideast"),

state,Q4GDP,pop2019)

print(mideast.df)

� Solution 3: The Pipes

mideast.df <- state.df %>%

filter(region=="Mideast") %>%

select(state,Q4GDP,pop2019)

print(mideast.df)

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

- 122 - Chapter 4: Exploratory Data Analysis with Tidyverse

Solution 1 requires that you explicitly create and name intermediate datasets

for each action you perform. Creating and naming a large number of interme-

diate datasets that are never going to be used again slows down the analysis

process in addition to cluttering your workspace with new R objects you do not

need to create. In complex analysis projects where different functions are called

on many occasions, this approach makes script files more difficult to read, as

important datasets are mixed with intermediate datasets in the workspace.

Solution 2 does not use intermediate files explicitly, which is interesting.

However, all functions used are nested, which has a negative impact on the

readability of your script file. Actually, when you take a look at solution 2,

you immediately see how difficult it is to quickly understand what is going on.

Therefore, maintaining such a script can be challenging.

The use of pipes in solution 3 resolves both the nesting as well as the

intermediate dataset problems. With the pipe operator %>% , the object on

the left is used as the first argument in the function on the right. That is

x%>% f(y) translates to f(x,y). Thus, if f(x,y) is needed as first argument

in another function h(), then instead of writing h(f(x,y),z), you will write

x%>% f(y)%>% h(z), which is much more readable, as the operations are listed

sequentially.

Whenever you use pipes, the first argument you would normally use

in any function must be omitted. Instead, that first argument would

appear on the left side of the pipe operator. You will find script files

based on pipes to be much easier to maintain.

From now on, I will use the pipe operator frequently to make script files

more readable. I strongly invite you to get use to piping, as it is one of the

major innovations of tidyverse. Not using it will make it more difficult to

conduct complex analysis projects with R.

Get the entire ebook for $9.99 using the link: https://sites.fastspring.com/agreestat/product/usingrforexcelanalysts

https://agreestat.com/books/xls2r/ https://agreestat.com/books/

