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Abstract

Cohen’s kappa coefficient was originally proposed for two raters only, and it later
extended to an arbitrarily large number of raters to become what is known as Fleiss’
generalized kappa. Fleiss’ generalized kappa and its large-sample variance are still
widely used by researchers and were implemented in several software packages,
including, among others, SPSS and the R package ‘‘rel.’’ The purpose of this article is
to show that the large-sample variance of Fleiss’ generalized kappa is systematically
being misused, is invalid as a precision measure for kappa, and cannot be used for con-
structing confidence intervals. A general-purpose variance expression is proposed,
which can be used in any statistical inference procedure. A Monte-Carlo experiment
is presented, showing the validity of the new variance estimation procedure.
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Introduction

Cohen (1960) introduced the kappa coefficient as a measure of the extent of agree-

ment among two raters, which adjusts for the possibility of agreement by pure

chance. This measure became popular among researchers and underwent several

extensions. Fleiss (1971), Light (1971), Krippendorff (1970), and Conger (1980),

among others, proposed various extensions of Cohen’s kappa to multiple raters. For

several decades, researchers used Cohen’s kappa and its generalizations despite its

many well-documented deficiencies. Feinstein and Cicchetti (1990) as well as

Cicchetti and Feinstein (1990) discussed several situations where kappa produces an

unduly low agreement coefficient when the raters are in an almost perfect agreement.
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To avoid these kappa paradoxes, alternative agreement coefficients were developed.

Among others, Gwet (2008) proposed the AC1 coefficient, which is gaining in popu-

larity and has been implemented in some major statistical packages such as SAS.

All agreement coefficients mentioned in the previous paragraph are summary mea-

sures that represent one possible approach to analyzing agreement data. Alternative

approaches often used by researchers are based on statistical models that include

latent class models and quasi-symmetric log-linear models. Log-linear models are

extensively discussed by von Eye and Mun (2005), while latent class models are dis-

cussed by Schuster and Smith (2002) and Raykov et al. (2013). A key advantage of

statistical models is their ability to describe the structure of the joint distribution of

ratings and to test specific hypotheses that cannot be investigated with summary mea-

sures. Schuster (2002) also discussed a different type of models known as mixture

models, which provide a hybrid approach between traditional summary statistics and

log-linear models.

This article focuses on Fleiss’ generalized kappa and its variance estimation.

Although Fleiss (1971) labeled his coefficient as the generalized kappa, it does not

reduce to Cohen’s kappa when the number of raters is 2. Instead, it reduces to the pi

coefficient proposed earlier by Scott (1955). In that sense, Fleiss’ generalized kappa

is strictly speaking an extension of Scott’s pi coefficient. The standard errors pro-

vided by Fleiss (1971) were later deemed to be incorrect by Fleiss et al. (1979). The

revised standard error provided by Fleiss et al. (1979), which is still widely being

used today, is not meant to be used for quantifying the precision of Fleiss’ kappa.

Instead, it should be used solely for testing the hypothesis of zero agreement among

raters. Equation (12) of Fleiss et al. (1979) is valid only under the assumption that

there is no agreement among raters. If this assumption of no agreement is not satis-

fied, this equation becomes irrelevant.

On the very first page of their paper, Fleiss et al. (1979) indicated the following:

In this article, formulas for the standard error of kappa in the case of different sets of equal

numbers of raters that are valid when the number of subjects is large and the null hypothesis

is true are derived.

The goal that Fleiss et al. (1979) set for their paper was clearly stated on the first

page. Moreover, when these authors started the standard error derivation on page 2,

they specifically made the following assumption:

Consider the hypothesis that the ratings are purely random in the sense that for each subject,

the frequencies ni1, ni2, . . . , nik are a set of multinomial frequencies with parameters n and

(P1, P2, . . . , Pk), where
P

Pj = 1:.

Since the ratings are assumed to be purely random, no agreement should be

expected to occur beyond chance. This is not a problem, as long as the researcher is

solely concerned about testing the null hypothesis of no agreement. But if precision

measures are to be reported, or confidence intervals constructed, then the standard
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error proposed by Fleiss et al. (1979) should be avoided. For unknown reasons,

researchers in various fields of research have been using this standard error as a mea-

sure of precision. The implementation of this standard error in a major statistical

software such as SPSS� or in the R package ‘‘rel’’ must have contributed to its wide-

spread misuse.

Notation

Let us consider an interrater reliability experiment, which involves n subjects, r

raters, and q categories into which each of the r raters is expected to classify all n

subjects (there could be missing ratings in case some raters do not rate all subjects,

but we will ignore these practical considerations for now). A total of rik out of r raters

have classified subject i into category k. Let pk be the probability for a random rater

to classify a random subject into category k. The exact value of pk will generally be

unknown. However, once rating data are collected, one would typically replace the

unknown pk with its estimated value bpk defined as follows:

bpk =
1

n

Xn

i = 1

rik=r: ð1Þ

Note that pk represents the theoretical value to which bpk converges (in probability)

as the number of subjects n increases. The distinction between these two quantities

will become essential later in this paper, when deriving the large-sample variance of

Fleiss’ coefficient. For simplicity, pH

k will denote the complement of pk , given by

1� pk . Likewise, the complement of bpk would labeled as bpH

k .

Fleiss’ Kappa and Its Variance

Fleiss’ generalized kappa coefficient is defined as follows:

bk =
pa � pe

1� pe

where

pa = 1
n

Pn
i = 1

Pq
k = 1

rik(rik�1)
r(r�1)

,

pe =
Pq
k = 1

bp2
k :

8>><
>>: ð2Þ

In Equation 2, pa and pe represent the percent agreement and the percent chance

agreement, respectively. Fleiss’ generalized kappa is denoted by bk in Equation 2 and

will converge (in probability) to a fixed quantity labeled as k.

The variance estimate that Fleiss et al. (1979) proposed is given by

varF(bk) =
2

nr(r � 1)(
Pq
k = 1

bpk bpH

k )2

½(
Xq

k = 1

bpk bpH

k )2 �
Xq

k = 1

bpk bpH

k (bpH

k � bpk)� ð3Þ
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Equation 3 is the expression many researchers currently use for estimating the var-

iance of Fleiss’ generalized kappa coefficient. It is a direct function of the classifica-

tion probabilities bpk and is independent of the kappa coefficient itself. This is due to

the assumption of no agreement among raters, which underlies the derivation of this

variance, making it suitable for hypothesis testing only.

The next section is devoted to the derivation of a general-purpose variance estima-

tor that can be used as a precision measure as well as for hypothesis testing or any

other inferential procedure involving Fleiss’ generalized kappa coefficient.

Proposed Variance

To compute the variance of Fleiss’ generalized kappa of Equation 2, the following

equation is recommended:

varG(bk) =
1� f

n

1

n� 1

Xn

i = 1

(kH

i � bk)2, ð4Þ

where

kH

i = ki � 2(1� bk)
peji � pe

1� pe

, ð5Þ

with ki = (paji � pe)=(1� pe). Moreover, paji and peji representing the percent agree-

ment and percent chance agreement evaluated on subject i alone, are, respectively,

given by

paji =
Xq

k = 1

rik(rik � 1)

r(r � 1)
and peji =

Xq

k = 1

bpkrik=r: ð6Þ

The f factor of Equation 4 represents the sampling fraction (i.e., f = n=N ) to be used

if the n subjects were selected from a larger universe of N subjects. In the finite popu-

lation sampling literature, 1� f is often referred to as the finite population correction.

This correction may be useful if the n sample subjects are selected from a universe of

N subjects of small to moderate size. Otherwise, one can safely set f = 0.

Large Sample Approximation

This section outlines the general steps leading to the formulation of the variance

given by Equation 4. A rigorous mathematical proof of the validity of this equation

would be out of the scope of this paper. Instead, the derivations are carried out heur-

istically and a Monte-Carlo simulation study is presented to provide an empirical

validation.

The general strategy consists of using the linearization method to demonstrate that

for large subject samples, bk has the same probability distribution as a linear
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expression, which is a simple average of subject-level values and whose variance is

simple to derive. That common limit probability distribution is in fact Normal.

Dealing With the Denominator of Fleiss’ Kappa

One reason calculating the variance of Fleiss’ kappa appears challenging is the term

1� pe that appears in its denominator as seen in Equation 2. The first thing to do is

to show that the large-sample distribution of kappa is the same as the large-sample

distribution of a statistic that does not involve any sample dependent term in the

denominator. This is accomplished by realizing that if bpk converges in probability to

pk for each category k (i.e., bpk!
P

pk) then it follows from the Continuous Mapping

Theorem1 that pe will converge (in probability) to Pe defined by

Pe =
Xq

k = 1

p2
k

Convergence in probability will often be referred to mathematically as pe!
P

Pe. It fol-

lows that

1=(1� pe) =
1

(1� Pe)(1� en)
, ð7Þ

where en = (pe � Pe)=(1� Pe). Since en!
P

0, it follows from Taylor’s theorem2 that

for large samples 1=(1� en) = 1 + en + Remainder where the remainder goes to 0 (in

probability) at a faster rate than en. In large sample theory, this equation is often writ-

ten as 1=(1� en) = 1 + en + op(en) to indicate that the remainder goes to 0 faster than

en. It follows from Slutsky’s theorem3 that the large-sample probability distribution

of 1=(1� pe) is the same as the large-sample distribution of Le defined by

Le = (1 + en)=(1� Pe):

Consequently, Fleiss’ kappa has the same large-sample probability distribution as the

quantity k0, given by,

k0 = (pa � pe)Le: ð8Þ

Since k0 involves unknown terms such as Pe, it cannot be evaluated. But this should

not be a problem, since it is its probability distribution that is of interest to us for the

time being. Unknown quantities will be dealt with at the time of estimating the prob-

ability distribution variance after it has been clearly formulated.

Dealing With the Percent Agreement

The percent agreement pa is defined in Equation 2 and can be seen as a sample mean

obtained by averaging the paji values defined by Equation 6. It follows from the Law
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of Large Numbers4 that pa converges in probability to a fixed quantity denoted by Pa.

That is, pa!
P

Pa. It follows that k0 of Equation 8 can be rewritten as follows:

k0 =
pa � Pe

1� Pe

� (1� k)
pe � Pe

1� Pe

, ð9Þ

where k = (Pa � Pe)=(1� Pe). In Equation 9, only pa and pe are sample dependent.

The other terms are fixed and are not subject to any variation. While the percent

agreement pa is a regular sample mean of subject-level values, this is not the case for

the percent chance agreement pe (see Equation 2). Therefore, the percent chance

agreement must be further processed to linearize it.

Linearization of the Percent Chance Agreement

As previously indicated, the estimated propensity bpk for classification into category

k converges in probability toward the fixed quantity pk . It follows from the Taylor’s

theorem that in the neighborhood of pk , bpk can be expressed as follows:bp2
k = p2

k + 2pk(bpk � pk) + Remainder, where the remainder is term that converges

(in probability) toward 0, faster than the difference bpk � pk as the number of sub-

jects increases. Consequently, it follows from another application of Slutsky’s theo-

rem that the large-sample distribution of the difference pe � Pe of Equation 9 is the

same as that of 2(pej0 � Pe) where pej0 is given by

pej0 =
Xq

k = 1

pk bpk =
1

n

Xn

i = 1

peji, where peji =
Xq

k = 1

pkrik=r: ð10Þ

Therefore, the large-sample distribution of k0 of Equation 9 is the same as the distri-

bution of k1 given by

k1 =
pa � Pe

1� Pe

� 2(1� k)
pej0 � Pe

1� Pe

=
1

n

Xn

i = 1

kH

i , ð11Þ

where kH

i is defined by

kH

i = ki � 2(1� k)
peji � Pe

1� Pe

: ð12Þ

Equation 11 is the linear expression that was needed. It follows from the Central

Limit Theorem that the large-sample probability distribution of k1 is Normal with

mean k and a variance that can be estimated with Equation 4.

Monte Carlo Simulation

This article establishes that the large-sample probability distribution of Fleiss’ gener-

alized kappa is Normal with a mean at its expected value k and a variance that can
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be estimated by Equation 4. The way to verify the accuracy of this result is conduct a

simulation. A universe of subjects of a certain size N must first be created along with

the ratings as if the raters rated that entire universe. A Fleiss’ generalized kappa will

be calculated from the universe data to obtain the k value (i.e., the fixed population

parameter that will have to be estimated from smaller samples). For each given sam-

ple size n, a large number of samples of n subjects will selected from the universe.

Using the corresponding ratings, the sample-based Fleiss’ kappa bk will be computed

along with the associated 95% confidence interval as follows:

½bk � 1:96
ffiffiffiffiffiffiffiffiffi
v(bk)

p
; bk + 1:96

ffiffiffiffiffiffiffiffiffi
v(bk)

p
� ð13Þ

Alternatively, for a better coverage rate, one may use the Student’s critical value

t0:05(n� 1), which decreases with the sample size n, as opposed to the fixed value

1.96. Both critical values will get closer and closer as the number of subjects n in the

sample grows. The confidence interval based on the Student’s distribution is calcu-

lated as follows:

½bk � t0:05(n� 1)
ffiffiffiffiffiffiffiffiffi
v(bk)

p
; bk + t0:05(n� 1)

ffiffiffiffiffiffiffiffiffi
v(bk)

p
� ð14Þ

Confidence intervals were evaluated in this Monte Carlo experiment based on

Equation 14.

For each sample size n, a long series of such confidence intervals will be con-

structed, and coverage of the population kappa k by each of them will be checked. If

the variance formula is correct, then the coverage rate is expected to be close to its

nominal value of 95% for each value of the sample size n. As the value of n increases,

the interval coverage rate is expected to get closer and closer to 95%.

Population Data

Initially, a dataset of 3,500 subjects and seven raters was created. Each rater has to

classify all 3,500 subjects into one of five possible categories. The process of creat-

ing this initial dataset was set up so that each subject would be classified into one

randomly chosen category with probability 0.8 and will be classified into each of the

remaining four categories with the same probability of 0.05. These 3,500 represent

our population of subjects from which small subject samples will be selected, and

the population value Fleiss’ kappa is k = 0:5612.

Results

This investigation was conducted for different values of n varying from 10 to 50 with

a 5 increment. For each of these sample size values, 100,000 samples were selected

from the universe of 3,500 subjects. For each of the 100,000 samples 2 confidence

intervals were calculated. One interval was based on the new variance Equation 4

also referred to as Var2020 in this section. The second interval was based on the
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variance proposed by Fleiss et al. (1979), also referred to as Var1979 in this section.

The results of this experiment are shown in Table 1 and depicted in Figure 1

The first column of Table 1 shows the different sample sizes used. The second col-

umn labeled as ‘‘Mean Kappa’’ represents for each sample size n, the average of all

100,000 kappa values generated. Columns ‘‘Mean Var1979’’ and ‘‘Mean Var2020’’

represent the mean values of all 100,000 Var1979 (see Equation 3) and Var2020 (see

Equation 4) calculated for a given sample size. The ‘‘True Variance’’ column is the

Monte-Carlo variance calculated as follows:

Table 1. Results of the Monte Carlo Experiment.

n
Mean
kappa

Mean
Var1979

Mean
Var2020

True
variance

Coverage
Var1979

Coverage
Var2020

10 0.532 0.00144 0.00883 0.00920 60.1% 93.0%
15 0.542 0.00090 0.00579 0.00587 58.0% 93.8%
20 0.547 0.00065 0.00430 0.00436 56.9% 94.1%
25 0.550 0.00051 0.00342 0.00347 56.2% 94.2%
30 0.552 0.00042 0.00284 0.00284 56.1% 94.5%
35 0.553 0.00036 0.00243 0.00244 55.7% 94.5%
40 0.555 0.00031 0.00212 0.00210 55.7% 94.7%
45 0.555 0.00028 0.00188 0.00186 55.6% 94.8%
50 0.556 0.00025 0.00169 0.00166 55.8% 94.9%
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0.85
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Figure 1. Monte Carlo simulation coverage rates.
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True Variance =
1

100, 000

X100, 000

s = 1

(bks � bk)2,

where bk is the average of all 100,000 replicate bks values. The last two columns rep-

resent the two coverage rates of the confidence intervals based of Var1979 and

Var2020, respectively.

It follows from Table 1 and Figure 1 that even for sample sizes as small as n = 10

the coverage rates of the confidence intervals based on the recommended variance of

Equation 4 is very close to its nominal value of 95%. These rates get closer and closer

to this nominal value as the sample size increases. However, the coverage rates of the

confidence intervals based of the variance proposed by Fleiss et al. (1979) are drama-

tically low. Figure 1 even suggests that this coverage rate tends to decrease as the

sample size increases. This is an indication that this variance formula is invalid for

calculating confidence intervals. Table 1 also shows that Mean2020 is consistently

close to the ‘‘True Variance’’ for all values of the sample size.
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Notes

1. The Continuous Mapping Theorem stipulates that any continuous function preserves the

stochastic convergence of a sequence of random variables.

2. Taylor’s theorem approximates any differentiable function by a linear function in the

neighborhood of a given point.

3. Slutsky’s theorem is well known in probability theory. It stipulates that if a sequence of

random variables Xn converges in probability to a constant value c and the large-sample

distribution of another sequence Yn is the same as the distribution of a random variable Y ,

then the large-sample distribution of any continuous function g(Xn, Yn) is the same as the

distribution of g(c, Y ).

4. The Law of Large Numbers, in its ‘‘weak’’ version due to Aleksandr Khinchin (1894-1959)

stipulates that the sample average converges in probability toward its expected value.
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